Exact results for an approximate renormalisation scheme and some predictions for the breakup of invariant ori

[1]  R. MacKay A criterion for non-existence of invariant tori for Hamiltonian systems , 1989 .

[2]  S. Aubry,et al.  Polarisation and transition by breaking of analyticity in a one-dimensional model for incommensurate structures in an electric field , 1987 .

[3]  Robert S. MacKay,et al.  Universal small-scale structure near the boundary of siegel disks of arbitrary rotation number , 1987 .

[4]  Satija Universal strange attractor underlying Hamiltonian stochasticity. , 1987, Physical review letters.

[5]  Robert S. MacKay,et al.  Boundary circles for area-preserving maps , 1986 .

[6]  I. C. Percival,et al.  Converse KAM: Theory and practice , 1985 .

[7]  D. Escande,et al.  Destruction of KAM tori in Hamiltonian systems: Link with the destabilization of nearby cycles and calculation of residues , 1984 .

[8]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[9]  D. Escande,et al.  Threshold of global stochasticity and universality in Hamiltonian systems , 1984 .

[10]  S. Aubry,et al.  The discrete Frenkel-Kontorova model and its extensions: I. Exact results for the ground-states , 1983 .

[11]  R. MacKay A renormalization approach to invariant circles in area-preserving maps , 1983 .

[12]  D. Escande,et al.  Link between KAM tori and nearby cycles , 1982 .

[13]  S. Shenker,et al.  Critical behavior of a KAM surface: I. Empirical results , 1982 .

[14]  Dominique Escande,et al.  Renormalization method for computing the threshold of the large-scale stochastic instability in two degrees of freedom Hamiltonian systems , 1981 .

[15]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[16]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[17]  R. MacKay Transition to chaos for area-preserving maps , 1986 .

[18]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[19]  A. Kolmogorov On conservation of conditionally periodic motions for a small change in Hamilton's function , 1954 .