A Wind-powered Rover for a Low-Cost Venus Mission
暂无分享,去创建一个
Anthony J. Colozza | Geoffrey A. Landis | Samira A. Motiwala | Gina Benigno | Kathleen Hoza | Samira Motiwala | G. Landis | Anthony J Colozza | Gina M. Benigno | K. Hoza
[1] Geoffrey A. Landis,et al. Batteries for Venus Surface Operation , 2008 .
[2] P. Neudeck,et al. High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.
[3] Dayton A. Griffin. Blade System Design Studies Volume II: Preliminary Blade Designs and Recommended Test Matrix , 2004 .
[4] R. Ramos,et al. Data Acquisition for Measuring the Wind on Venus from Pioneer Venus , 1980, IEEE Transactions on Geoscience and Remote Sensing.
[5] Jack Park,et al. Wind Power Book , 1982 .
[6] James B. Garvin,et al. Venus - The nature of the surface from Venera panoramas , 1984 .
[7] Scott Hensley,et al. Magellan mission summary , 1992 .
[8] Raymond E. Arvidson,et al. Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .
[9] D. Muhleman. Microwave Opacity of the Venus Atmosphere. , 1969 .
[10] Andrew E. Johnson,et al. Mars Exploration Rover engineering cameras : Mars exploration rover mission and landing sites , 2003 .
[11] Wayne A. Wong,et al. Advanced Stirling Convertor (ASC) - From Technology Development to Future Flight Product , 2008 .
[12] S. V. Vadawale,et al. Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover , 2014 .
[13] Thomas E. Wolverton,et al. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .
[14] Steven W. Squyres,et al. The Alpha-Particle-X-Ray-Spectrometer(APXS) for the Mars Science Laboratory (MSL) Rover Mission , 2009 .
[15] Geoffrey A. Landis,et al. Robotic exploration of the surface and atmosphere of Venus , 2006 .
[16] Miles J. Johnson,et al. Athena Microscopic Imager investigation , 2003 .
[17] Geoffrey A. Landis,et al. Photovoltaic performance in the Venus environment , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).
[18] Matthew J. Roman,et al. Design and Analysis of a Four Wheeled Planetary Rover , 2005 .
[19] Rodger W. Dyson,et al. Progress Towards the Development of a Long-Lived Venus Lander Duplex System , 2010 .
[20] Bruce Fegley,et al. The Planetary Scientist's Companion , 1998 .
[21] G. Mehall,et al. Miniature Thermal Emission Spectrometer on the Mars Exploration Rovers , 2007 .
[22] Steven W. Squyres,et al. The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .
[23] Gary W. Hunter,et al. Silicon Carbide Die Attach Scheme for 500°C Operation , 2000 .
[24] Rodger W. Dyson,et al. Venus Rover Design Study , 2011 .
[25] M. Keldysh. Venus exploration with the Venera 9 and Venera 10 spacecraft , 1977 .
[26] S. T. Elliot,et al. Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .
[27] Hongwei Ma,et al. Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .
[28] Czeslaw Antony Marchaj,et al. Aero-Hydrodynamics of Sailing , 1987 .
[29] Joseph D. Lafleur. Nuclear Power Systems for Spacecraft , 1970, IEEE Transactions on Aerospace and Electronic Systems.
[30] G. Ponchak,et al. Development of High Temperature Wireless Sensor Technology Based on Silicon Carbide Electronics , 2010 .
[31] Adam M. Ragheb,et al. Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio , 2011 .
[32] Stephen Gorevan,et al. High Temperature Mechanisms for Venus Exploration , 2008 .
[33] G. Landis,et al. Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions , 2013 .