A Wind-powered Rover for a Low-Cost Venus Mission

Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.

[1]  Geoffrey A. Landis,et al.  Batteries for Venus Surface Operation , 2008 .

[2]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[3]  Dayton A. Griffin Blade System Design Studies Volume II: Preliminary Blade Designs and Recommended Test Matrix , 2004 .

[4]  R. Ramos,et al.  Data Acquisition for Measuring the Wind on Venus from Pioneer Venus , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Jack Park,et al.  Wind Power Book , 1982 .

[6]  James B. Garvin,et al.  Venus - The nature of the surface from Venera panoramas , 1984 .

[7]  Scott Hensley,et al.  Magellan mission summary , 1992 .

[8]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[9]  D. Muhleman Microwave Opacity of the Venus Atmosphere. , 1969 .

[10]  Andrew E. Johnson,et al.  Mars Exploration Rover engineering cameras : Mars exploration rover mission and landing sites , 2003 .

[11]  Wayne A. Wong,et al.  Advanced Stirling Convertor (ASC) - From Technology Development to Future Flight Product , 2008 .

[12]  S. V. Vadawale,et al.  Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover , 2014 .

[13]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[14]  Steven W. Squyres,et al.  The Alpha-Particle-X-Ray-Spectrometer(APXS) for the Mars Science Laboratory (MSL) Rover Mission , 2009 .

[15]  Geoffrey A. Landis,et al.  Robotic exploration of the surface and atmosphere of Venus , 2006 .

[16]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[17]  Geoffrey A. Landis,et al.  Photovoltaic performance in the Venus environment , 2009, 2009 34th IEEE Photovoltaic Specialists Conference (PVSC).

[18]  Matthew J. Roman,et al.  Design and Analysis of a Four Wheeled Planetary Rover , 2005 .

[19]  Rodger W. Dyson,et al.  Progress Towards the Development of a Long-Lived Venus Lander Duplex System , 2010 .

[20]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[21]  G. Mehall,et al.  Miniature Thermal Emission Spectrometer on the Mars Exploration Rovers , 2007 .

[22]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[23]  Gary W. Hunter,et al.  Silicon Carbide Die Attach Scheme for 500°C Operation , 2000 .

[24]  Rodger W. Dyson,et al.  Venus Rover Design Study , 2011 .

[25]  M. Keldysh Venus exploration with the Venera 9 and Venera 10 spacecraft , 1977 .

[26]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[27]  Hongwei Ma,et al.  Characterization and Calibration of the CheMin Mineralogical Instrument on Mars Science Laboratory , 2012 .

[28]  Czeslaw Antony Marchaj,et al.  Aero-Hydrodynamics of Sailing , 1987 .

[29]  Joseph D. Lafleur Nuclear Power Systems for Spacecraft , 1970, IEEE Transactions on Aerospace and Electronic Systems.

[30]  G. Ponchak,et al.  Development of High Temperature Wireless Sensor Technology Based on Silicon Carbide Electronics , 2010 .

[31]  Adam M. Ragheb,et al.  Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio , 2011 .

[32]  Stephen Gorevan,et al.  High Temperature Mechanisms for Venus Exploration , 2008 .

[33]  G. Landis,et al.  Analysis of Solar Cell Efficiency for Venus Atmosphere and Surface Missions , 2013 .