Safe distributed motion coordination for second-order systems with different planning cycles

When multiple robots operate in the same environment, it is desirable for scalability purposes to coordinate their motion in a distributed fashion while providing guarantees about their safety. If the robots have to respect second-order dynamics, this becomes a challenging problem, even for static environments. This work presents a replanning framework where each robot computes partial plans during each cycle, while executing a previously computed trajectory. Each robot communicates with its neighbors to select a trajectory that is safe over an infinite time horizon. The proposed approach does not require synchronization and allows the robots to dynamically change their cycles over time. This paper proves that the proposed motion coordination algorithm guarantees safety under this general setting. This framework is not specific to the underlying robot dynamics, as it can be used with a variety of dynamical systems, nor to the planning or control algorithm used to generate the robot trajectories. The performance of the approach is evaluated using a distributed multi-robot simulator on a computing cluster, where the simulated robots are forced to communicate by exchanging messages. The simulation results confirm the safety of the algorithm in various environments with up to 32 robots governed by second-order dynamics.

[1]  Gregory S. Chirikjian,et al.  Algorithmic Foundation of Robotics VIII, Selected Contributions of the Eight International Workshop on the Algorithmic Foundations of Robotics, WAFR 2008, Guanajuato, Mexico, December 7-9, 2008 , 2009, WAFR.

[2]  Wyatt S. Newman,et al.  Reflexive collision avoidance: a generalized approach , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[3]  Dimos V. Dimarogonas,et al.  Decentralized Navigation Functions for Multiple Robotic Agents with Limited Sensing Capabilities , 2007, J. Intell. Robotic Syst..

[4]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[5]  S. LaValle,et al.  Randomized Kinodynamic Planning , 2001 .

[6]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[7]  Oliver Brock,et al.  High-speed navigation using the global dynamic window approach , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[8]  Kostas E. Bekris,et al.  Asynchronous Distributed Motion Planning with Safety Guarantees under Second-Order Dynamics , 2010, WAFR.

[9]  A. Bicchi,et al.  Decentralized cooperative conflict resolution among multiple autonomous mobile agents , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[10]  Jing Xiao,et al.  Perceived CT-Space for Motion Planning in Unknown and Unpredictable Environments , 2008, WAFR.

[11]  Kostas E. Bekris,et al.  Safe and Distributed Kinodynamic Replanning for Vehicular Networks , 2009, Mob. Networks Appl..

[12]  Hajime Asama,et al.  Inevitable collision states. A step towards safer robots? , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[14]  Stephen M. Rock,et al.  Dynamic Networks for Motion Planning in Multi-Robot Space Systems , 2003 .

[15]  Günther Schmidt,et al.  Conflict-free motion of multiple mobile robots based on decentralized motion planning and negotiation , 1997, Proceedings of International Conference on Robotics and Automation.

[16]  Yi Li,et al.  Motion Planning of Multiple Agents in Virtual Environments using Coordination Graphs , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Ross A. Knepper,et al.  Differentially constrained mobile robot motion planning in state lattices , 2009 .

[18]  Dinesh Manocha,et al.  Reciprocal collision avoidance with acceleration-velocity obstacles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  Antonio Bicchi,et al.  Decentralized Cooperative Policy for Conflict Resolution in Multivehicle Systems , 2007, IEEE Transactions on Robotics.

[20]  Vladimir J. Lumelsky,et al.  Decentralized Motion Planning for Multiple Mobile Robots: The Cocktail Party Model , 1997, Auton. Robots.

[21]  Oliver Brock,et al.  Planning Long Dynamically-Feasible Maneuvers for Autonomous Vehicles , 2009 .

[22]  Kristi A. Morgansen,et al.  Decentralized reactive collision avoidance for multivehicle systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  Nikolaus Correll,et al.  Any-Com Multi-robot Path-Planning with Dynamic Teams: Multi-robot Coordination under Communication Constraints , 2010, ISER.

[24]  Jean-Claude Latombe,et al.  Motion planning for multiple mobile robots using dynamic networks , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[25]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[26]  Ian M. Mitchell,et al.  Safety verification of conflict resolution manoeuvres , 2001, IEEE Trans. Intell. Transp. Syst..

[27]  Nidhi Kalra,et al.  Replanning with RRTs , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[28]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[29]  Christos G. Cassandras,et al.  A Cooperative receding horizon controller for multivehicle uncertain environments , 2006, IEEE Transactions on Automatic Control.

[30]  Dimos V. Dimarogonas,et al.  Decentralized feedback stabilization of multiple nonholonomic agents , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[31]  Kris K. Hauser Adaptive Time Stepping in Real-Time Motion Planning , 2010, WAFR.

[32]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[33]  Kostas E. Bekris,et al.  Greedy but Safe Replanning under Kinodynamic Constraints , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Oliver Brock,et al.  Elastic roadmaps—motion generation for autonomous mobile manipulation , 2010, Auton. Robots.

[35]  Manuela M. Veloso,et al.  Safe Multirobot Navigation Within Dynamics Constraints , 2006, Proceedings of the IEEE.

[36]  Dimos V. Dimarogonas,et al.  3D navigation and collision avoidance for nonholonomic aircraft‐like vehicles , 2010 .

[37]  Florent Lamiraux,et al.  Reactive path deformation for nonholonomic mobile robots , 2004, IEEE Transactions on Robotics.

[38]  Jean-Claude Latombe,et al.  Motion planning in the presence of moving obstacles , 1992 .

[39]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[40]  Dinesh Manocha,et al.  The Hybrid Reciprocal Velocity Obstacle , 2011, IEEE Transactions on Robotics.

[41]  Raffaello D'Andrea,et al.  Iterative MILP methods for vehicle-control problems , 2005, IEEE Transactions on Robotics.

[42]  Wolfram Burgard,et al.  Finding and Optimizing Solvable Priority Schemes for Decoupled Path Planning Techniques for Teams of Mobile Robots , 2002, PuK.

[43]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[44]  Thierry Fraichard,et al.  A Short Paper about Motion Safety , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[45]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1998, IEEE Trans. Robotics Autom..

[46]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[47]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[48]  Thierry Fraichard,et al.  Collision avoidance in dynamic environments: An ICS-based solution and its comparative evaluation , 2009, 2009 IEEE International Conference on Robotics and Automation.

[49]  Claire J. Tomlin,et al.  Maneuver design for multiple aircraft conflict resolution , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[50]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[51]  Christian Laugier,et al.  Navigation Among Moving Obstacles Using the NLVO: Principles and Applications to Intelligent Vehicles , 2005, Auton. Robots.

[52]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[53]  Kostas E. Bekris,et al.  A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[54]  E. Feron,et al.  Real-time motion planning for agile autonomous vehicles , 2000, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[55]  Kristijan Macek,et al.  Mobile Robot Planning in Dynamic Environments and on Growable Costmaps , 2008, ICRA 2008.

[56]  K. Madhava Krishna,et al.  On the influence of sensor capacities and environment dynamics onto collision-free motion plans , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  J. Kuffner,et al.  Improved Motion Planning Speed and Safety using Regions of Inevitable Collision , 2008 .

[58]  Michiel van de Panne,et al.  Faster Motion Planning Using Learned Local Viability Models , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[59]  Toms Lozano-Pfrez On Multiple Moving Objects DTlC IELECTE ( 0 , 2022 .

[60]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[61]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  Joel W. Burdick,et al.  Robotic motion planning in dynamic, cluttered, uncertain environments , 2010, 2010 IEEE International Conference on Robotics and Automation.