Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders.

Importance Large-scale neuroimaging studies have revealed group differences in cortical thickness across many psychiatric disorders. The underlying neurobiology behind these differences is not well understood. Objective To determine neurobiologic correlates of group differences in cortical thickness between cases and controls in 6 disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), and schizophrenia. Design, Setting, and Participants Profiles of group differences in cortical thickness between cases and controls were generated using T1-weighted magnetic resonance images. Similarity between interregional profiles of cell-specific gene expression and those in the group differences in cortical thickness were investigated in each disorder. Next, principal component analysis was used to reveal a shared profile of group difference in thickness across the disorders. Analysis for gene coexpression, clustering, and enrichment for genes associated with these disorders were conducted. Data analysis was conducted between June and December 2019. The analysis included 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA consortium. The numbers of cases and controls in each of the 6 disorders were as follows: ADHD: 1814 and 1602; ASD: 1748 and 1770; BD: 1547 and 3405; MDD: 2658 and 3572; OCD: 2266 and 2007; and schizophrenia: 2688 and 3244. Main Outcomes and Measures Interregional profiles of group difference in cortical thickness between cases and controls. Results A total of 12 721 cases and 15 600 controls, ranging from ages 2 to 89 years, were included in this study. Interregional profiles of group differences in cortical thickness for each of the 6 psychiatric disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes (except for BD), and microglia (except for OCD); collectively, gene-expression profiles of the 3 cell types explain between 25% and 54% of variance in interregional profiles of group differences in cortical thickness. Principal component analysis revealed a shared profile of difference in cortical thickness across the 6 disorders (48% variance explained); interregional profile of this principal component 1 was associated with that of the pyramidal-cell gene expression (explaining 56% of interregional variation). Coexpression analyses of these genes revealed 2 clusters: (1) a prenatal cluster enriched with genes involved in neurodevelopmental (axon guidance) processes and (2) a postnatal cluster enriched with genes involved in synaptic activity and plasticity-related processes. These clusters were enriched with genes associated with all 6 psychiatric disorders. Conclusions and Relevance In this study, shared neurobiologic processes were associated with differences in cortical thickness across multiple psychiatric disorders. These processes implicate a common role of prenatal development and postnatal functioning of the cerebral cortex in these disorders.

Erick Jorge Canales-Rodríguez | Dan J Stein | Melissa J. Green | Janice M. Fullerton | Joseph A. King | Benjamin A. Ely | Kathryn R. Cullen | S. E. Stewart | Tiffany M Chaim-Avancini | B. Franke | O. Andreassen | R. Ophoff | V. Calhoun | J. Ford | D. Mathalon | Adrian Preda | J. Turner | T. V. van Erp | M. Alda | N. Jahanshad | P. Thompson | T. Paus | K. Lesch | H. Völzke | A. Aleman | R. Gur | A. James | R. Gur | J. Kwon | S. Lawrie | H. Whalley | M. Tosetti | D. Glahn | P. Kochunov | D. Fair | R. Salvador | T. van Amelsvoort | F. Piras | F. Piras | G. Spalletta | J. Fullerton | E. Grevet | A. Lundervold | B. Luna | J. Buitelaar | A. Anticevic | Carmen Moreno | P. Mitchell | A. Fallgatter | P. Schofield | T. Ethofer | I. Gotlib | K. O'Hearn | M. Bellgrove | S. Faraone | D. Murphy | M. Sacchet | D. Hibar | E. Stern | T. Kircher | T. Nakamae | B. Mwangi | Mon-Ju Wu | J. Soares | U. Dannlowski | N. Harrison | P. Pauli | R. Calvo | L. Lázaro | N. Bargalló | B. Harrison | C. Pantelis | D. Veltman | D. Dima | B. Baune | Y. Vives-Gilabert | M. Portella | K. Koch | L. Hong | I. Nenadić | S. Ehrlich | E. Walton | N. Skokauskas | M. Cercignani | O. Gruber | D. Tordesillas-Gutiérrez | K. Konrad | E. Anagnostou | T. Banaschewski | Z. Pausova | P. Shaw | L. Minuzzi | R. Marsh | N. V. van Haren | C. Mcdonald | C. H. Fu | F. Muratori | B. Crespo-Facorro | R. Redlich | N. Opel | D. Grotegerd | K. Dohm | N. Landrø | C. Deruelle | S. Hohmann | D. Brandeis | E. Daly | D. Wolf | D. Denys | G. Auzias | C. Soriano-Mas | A. Bertolino | C. Arango | H. Grabe | A. Retico | K. Wittfeld | T. Satterthwaite | S. Borgwardt | T. Frodl | C. Murphy | A. Sawa | A. Vance | A. Voineskos | S. Ameis | C. Hartman | F. Španiel | T. Hajek | S. Calderoni | G. Busatto | J. Raduà | C. Davey | H. Simpson | K. Rubia | D. Tolin | K. Sim | J. Ramos-Quiroga | A. Christakou | A. Cubillo | G. Roberts | N. Groenewold | L. Schmaal | R. Goya-Maldonado | B. Krämer | R. Bülow | M. Boks | C. Ching | M. Hoogman | Jean Shin | D. Heslenfeld | P. Hoekstra | D. Cannon | R. Hashimoto | O. A. van den Heuvel | J. Menchón | M. Jalbrzikowski | E. Vieta | M. Zanetti | Y. Paloyelis | P. Boedhoe | A. Uhlmann | A. Di Giorgio | D. Nguyen | N. Cascella | M. Serpa | Ó. Vilarroya | T. Hahn | L. Reneman | M. Landén | J. Oosterlaan | P. Asherson | J. Haavik | J. Kuntsi | A. Reif | Pedro G. P. Rosa | E. Pomarol-Clotet | F. Assogna | D. Vecchio | C. Abé | Y. Abe | P. Arnold | F. Benedetti | I. Bollettini | Yuqi Cheng | K. Fitzgerald | P. Gruner | C. Lochner | D. Mataix-Cols | J. Narayanaswamy | Noam Soreni | G. Venkatasubramanian | G. V. van Wingen | J. Yun | J. Repple | S. Thomopoulos | R. Ayesa-Arriola | A. Krug | D. van Rooij | A. Baranov | Sarah Baumeister | B. P. Brennan | T. Chaim-Avancini | D. Coghill | A. Conzelmann | Jennifer Fedor | M. Gabel | T. Gogberashvili | Shlomi Haar | Y. Hirano | M. F. Høvik | J. Janssen | Fern Jaspers-Fayer | G. Karkashadze | G. Kohls | S. Lera-Miguel | Liesbeth Hoekstra | M. Louzã | C. Malpas | H. McCarthy | P. Morgado | A. Nakagawa | R. Nicolau | Ruth O'Gorman Tuura | B. Oranje | M. Parellada | K. Plessen | O. Puig | A. Schrantee | J. Seitz | Devon A. Shook | T. Silk | S. Stewart | G. V. von Polier | Yuliya Yoncheva | G. Ziegler | T. Ho | E. Pozzi | Y. Quidé | P. Rasser | V. Carr | U. Schall | T. Weickert | C. Weickert | A. Škoch | E. Dickie | F. Howells | Y. Takayanagi | A. Richter | L. French | S. Alonso-Lana | M. Fatjó-Vilas | J. Goikolea | L. Nabulsi | B. Overs | H. Temmingh | E. Leehr | M. Kirschner | D. Tomeček | L. Rauer | S. Sarró | Jian Xu | S. Meinert | A. Guerrero-Pedraza | S. V. D. van der Werff | F. Picon | C. Alloza | N. Banaj | J. Bruggemann | M. Picó-Pérez | C. Höschl | J. Vázquez-Bourgon | Claiton H.D. Bau | R. Jonassen | E. Hilland | J. Reddy | Y. Patel | F. Macmaster | V. Richarte | E. Setién-Suero | A. McIntosh | B. Haarman | T. Yang | G. Bakker | N. J. van der Wee | I. Lebedeva | R. Cupertino | Dana D Nguyen | Aditya Singh | J. King | L. Namazova | J. Santonja | T. Erwin-Grabner | Derek Howard | C. Bandeira | Caterina del Mar Bonnín | Nadine Parker | F. Martyn | T. Borgers | L. A. Maglanoc | Genevieve McPhilemey | Victor Ortiz García de la Foz | K. Sarink | Schmitt Simon | Andrea S Weideman | Kun Yang | N. Soreni | Janardhan Y. C. Reddy | C. Moreno | G. C. Ziegler | Ruth O’Gorman Tuura | S. Baumeister | P. Thompson | P. Thompson | N. V. D. van der Wee | Yash Patel | Rosa Nicolau | P. Thompson | Mauricio Serpa

[1]  T. Paus,et al.  A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents , 2020, Molecular Psychiatry.

[2]  F. Sanz,et al.  The DisGeNET knowledge platform for disease genomics: 2019 update , 2019, Nucleic Acids Res..

[3]  Rebecca C. Knickmeyer,et al.  ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries , 2019, Biological Psychiatry.

[4]  B. Franke,et al.  Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders , 2019, bioRxiv.

[5]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[6]  J. Peça,et al.  New insights on synaptic dysfunction in neuropsychiatric disorders , 2019, Current Opinion in Neurobiology.

[7]  I. Deary,et al.  Corticosteroids and Regional Variations in Thickness of the Human Cerebral Cortex across the Lifespan , 2019, Cerebral cortex.

[8]  Ivanei E. Bramati,et al.  Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. , 2019, The American journal of psychiatry.

[9]  N. Wray,et al.  A genome-wide association study of shared risk across psychiatric disorders implicates gene regulation during fetal neurodevelopment , 2019, Nature Neuroscience.

[10]  Hunna J. Watson,et al.  Genetic Identification of Cell Types Underlying Brain Complex Traits Yields Novel Insights Into the Etiology of Parkinson’s Disease , 2019, bioRxiv.

[11]  Karolinska Schizophrenia Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium , 2018 .

[12]  Adrian Preda,et al.  Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium , 2018, Biological Psychiatry.

[13]  L. Grinberg,et al.  Layer-specific reduced neuronal density in the orbitofrontal cortex of older adults with obsessive–compulsive disorder , 2018, Brain Structure and Function.

[14]  Louis Richer,et al.  Cell-Specific Gene-Expression Profiles and Cortical Thickness in the Human Brain , 2018, Cerebral cortex.

[15]  T Paus,et al.  Maturation of the Human Cerebral Cortex During Adolescence: Myelin or Dendritic Arbor? , 2018, Cerebral cortex.

[16]  Michele Giugliano,et al.  Large and fast human pyramidal neurons associate with intelligence , 2018, bioRxiv.

[17]  P. Penzes,et al.  Dendritic structural plasticity and neuropsychiatric disease , 2018, Nature Reviews Neuroscience.

[18]  Guangchuang Yu,et al.  clusterProfiler: An universal enrichment tool for functional and comparative study , 2018, bioRxiv.

[19]  Joseph A. King,et al.  Structural Neuroimaging of Anorexia Nervosa: Future Directions in the Quest for Mechanisms Underlying Dynamic Alterations , 2018, Biological Psychiatry.

[20]  Silvia Brem,et al.  Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group. , 2017, The American journal of psychiatry.

[21]  Jennifer Fedor,et al.  Cortical and subcortical brain morphometry differences between patients with autism spectrum disorders (ASD) and healthy individuals across the lifespan: results from the ENIGMA-ASD working group , 2017 .

[22]  Erick Jorge Canales-Rodríguez,et al.  Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group , 2017, Molecular Psychiatry.

[23]  Nick C Fox,et al.  Analysis of shared heritability in common disorders of the brain , 2018, Science.

[24]  N. Beerenwinkel,et al.  Clustering time series gene expression data with TMixClust , 2018 .

[25]  D. Weinberger,et al.  Genetic insights into the neurodevelopmental origins of schizophrenia , 2017, Nature Reviews Neuroscience.

[26]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[27]  V. Martínez‐Cerdeño,et al.  Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models , 2017, Developmental neurobiology.

[28]  S. Siegelbaum,et al.  The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit , 2017, The Journal of Neuroscience.

[29]  Lachlan T. Strike,et al.  Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group , 2016, Molecular Psychiatry.

[30]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[31]  B. McEwen,et al.  Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex , 2016, Neuropsychopharmacology.

[32]  Leon French,et al.  A FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas , 2015, Front. Neurosci..

[33]  S. Brignani,et al.  Axon guidance proteins in neurological disorders , 2015, The Lancet Neurology.

[34]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[35]  Pat Levitt,et al.  Neurodevelopment and the Origins of Brain Disorders , 2015, Neuropsychopharmacology.

[36]  J. Coyle,et al.  Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. , 2014, JAMA psychiatry.

[37]  A. Singleton,et al.  Genetic variability in the regulation of gene expression in ten regions of the human brain , 2014, Nature Neuroscience.

[38]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[39]  M. Ziats,et al.  Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum , 2014, Molecular Autism.

[40]  S. Iritani WHAT HAPPENS IN THE BRAIN OF SCHIZOPHRENIA PATIENTS?: AN INVESTIGATION FROM THE VIEWPOINT OF NEUROPATHOLOGY , 2013, Nagoya journal of medical science.

[41]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[42]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[43]  Peter Langfelder,et al.  Fast R Functions for Robust Correlations and Hierarchical Clustering. , 2012, Journal of statistical software.

[44]  Gaia Tavosanis,et al.  Dendritic structural plasticity , 2012, Developmental neurobiology.

[45]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[46]  Wolfgang Viechtbauer,et al.  Conducting Meta-Analyses in R with the metafor Package , 2010 .

[47]  S. Leurgans,et al.  Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. , 2010, Archives of general psychiatry.

[48]  B. Bogerts,et al.  Glial cells in schizophrenia: pathophysiological significance and possible consequences for therapy , 2009, Expert review of neurotherapeutics.

[49]  T. Paus,et al.  Why do many psychiatric disorders emerge during adolescence? , 2008, Nature Reviews Neuroscience.

[50]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[51]  E. Perry,et al.  Depletion of MAP2 expression and laminar cytoarchitectonic changes in dorsolateral prefrontal cortex in adult autistic individuals , 2004, Neuropathology and applied neurobiology.

[52]  R. Belmaker,et al.  The Postmortem Brain in Psychiatric Research , 2002, Neurobiological Foundation of Aberrant Behaviors.

[53]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[54]  R. Kerwin,et al.  Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. , 2001, Archives of general psychiatry.

[55]  L. Selemon,et al.  Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder , 2001, Biological Psychiatry.

[56]  J. Lieberman,et al.  Neural development, cell-cell signaling, and the "two-hit" hypothesis of schizophrenia. , 2001, Schizophrenia bulletin.

[57]  B. Roth,et al.  Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression∗ ∗ See accompanying Editorial, in this issue. , 1999, Biological Psychiatry.

[58]  P. Goldman-Rakic,et al.  Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. , 1995, Archives of general psychiatry.

[59]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[60]  F. Benes,et al.  Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. , 1986, Archives of general psychiatry.

[61]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.