Modification of the lattice thermal conductivity in semiconductor rectangular nanowires

A model for lattice thermal conductivity in a semiconductor nanowire with a rectangular cross section is investigated. It is based on solving the equations of phonon radiative transfer taking into account interface scattering and modification of the acoustic phonon dispersion. From the numerical calculations, we predict a decrease by an order of magnitude of the lattice thermal conductivity of a 10-nm-thick and 20-nm-wide rectangular nanowire. The interface scattering and phonon confinement play important roles in the reduction of lattice thermal conductivity. The nanowire lattice thermal conductivity is found to decrease with increasing temperature at moderate and high temperatures. It is shown that the phonon confinement becomes more important than interface scattering in the highly specular scattering case. The effect of interface roughness scattering and phonon confinement on the lattice thermal conductance in a rectangular wire at low temperature is also examined. We calculate the contribution to the...

[1]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[2]  P. Ade,et al.  The thermal conductivity of polymer and monomer diacetylene single crystals , 1990 .

[3]  G. Karunasiri,et al.  Performance of microbolometer focal plane arrays under varying pressure , 2000, IEEE Electron Device Letters.

[4]  Sherif Sedky,et al.  Characterization and optimization of infrared poly SiGe bolometers , 1999 .

[5]  J. Chu,et al.  Size effect on the thermal conductivity of nanowires , 2002 .

[6]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[7]  Ralph B. Dinwiddie,et al.  Thermal Conductivity 23 , 1996 .

[8]  K. Goodson,et al.  Thermal characterization of Bi2Te3/Sb2Te3 superlattices , 2001 .

[9]  Gamani Karunasiri,et al.  Determination of thermal parameters of microbolometers using a single electrical measurement , 1998 .

[10]  Alexander A. Balandin,et al.  Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well , 1998 .

[11]  A. Balandin,et al.  Effect of dislocations on thermal conductivity of GaN layers , 2001 .

[12]  Gang Chen,et al.  Phonon heat conduction in nanostructures , 2000 .

[13]  R. G. Chambers,et al.  The conductivity of thin wires in a magnetic field , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  C. Braun Singlet Exciton-Exciton Interaction in Anthracene , 1968 .

[15]  J. M. Worlock,et al.  Thermal conductance through discrete quantum channels , 2001 .

[16]  A. Clementi C.A.G. , 1993 .

[17]  D. Broido,et al.  Lattice thermal conductivity of wires , 1999 .

[18]  Takaaki Koga,et al.  Low-dimensional thermoelectric materials , 1999, Flexible Thermoelectric Polymers and Systems.

[19]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[20]  Mike A. Todd,et al.  Thin film ferroelectric materials for microbolometer arrays , 2000, SPIE Optics + Photonics.

[21]  Kang L. Wang,et al.  Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons , 1999 .

[22]  B. Nag,et al.  Electron transport in compound semiconductors , 1980 .

[23]  Yu,et al.  Electron-acoustic-phonon scattering rates in rectangular quantum wires. , 1994, Physical review. B, Condensed matter.

[24]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[25]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[26]  H. Casimir Note on the conduction of heat in crystals , 1938 .

[27]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[28]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[29]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[30]  L. Rego Thermal Transport in the Quantum Regime , 2001 .

[31]  Kenneth E. Goodson,et al.  PHONON-BOUNDARY SCATTERING IN THIN SILICON LAYERS , 1997 .

[32]  R. Morse The Velocity of Compressional Waves in Rods of Rectangular Cross Section , 1950 .

[34]  Pavel Neuzil,et al.  Evaluation of thermal parameters of bolometer devices , 2002 .

[35]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[36]  M. C. Cross,et al.  Effect of surface roughness on the universal thermal conductance , 2001 .

[37]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[38]  M. Wybourne,et al.  Acoustic phonon modes of rectangular quantum wires , 1997 .

[39]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[40]  Hubert Jerominek,et al.  Miniature VO2-based bolometric detectors for high-resolution uncooled FPAs , 2000, Defense, Security, and Sensing.

[41]  M. Wybourne,et al.  Acoustic-optical phonon scattering observed in the thermal conductivity of polydiacetylene single crystals , 1985 .