Fabrication and applications of cellulose nanoparticle-based polymer composites

The impressive mechanical properties, reinforcing capability, abundance, low weight, low filler load requirements, and biodegradable nature of nanoparticles from bioresources such as cellulose, make it an ideal candidate for the development of green polymer nanocomposites. Significant amount of research in this area is primarily focused on the extraction, qualitative surface modification, and evaluation of mechanical performance after filling in polymer matrixes at different ratios. The extreme agglomeration tendency, hydrophilic nature, difficult dispersion in many organic solvents of cellulose nanoparticles are the challenging obstacles when fabrication of such nanocomposites is concerned. Traditional processing of polymer composites mainly through extrusion and melt compounding, is not easily possible in case of cellulose nanocomposites due to higher possibility of poor dispersion and degradation of nanofibers. Therefore, issues related to the fabrication of nanofiber-based products and their application appears to be one of the most important areas in order to enhance their competitiveness with other nanoparticles. This review is aimed to summarize the recent accomplishments and issues involving the use of cellulose nanoparticles in the development of new polymeric materials. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers

[1]  Bei Wang,et al.  Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers , 2007 .

[2]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  R. Singh,et al.  Ecofriendly behavior of host matrix in composites prepared from agro‐waste and polypropylene , 2003 .

[4]  J. Sugiyama,et al.  Characterization of native crystalline cellulose in the cell walls of Oomycota , 1997 .

[5]  H. Takagi,et al.  Cellulose Nano-Fibers from Waste Newspaper , 2012 .

[6]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[7]  Seeram Ramakrishna,et al.  Electrospun cellulose nanofiber as affinity membrane , 2005 .

[8]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[9]  P. Degée,et al.  Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. , 2003, Carbohydrate research.

[10]  K. Oksman,et al.  Cellulose nanofiber based composites for use as ligament or tendon substitute , 2010 .

[11]  Ton Peijs,et al.  All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose , 2009 .

[12]  J. Wan,et al.  Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. , 2010, Bioresource technology.

[13]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[14]  Alain Dufresne,et al.  Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. , 2003, Biomacromolecules.

[15]  S. Chuayjuljit,et al.  Preparation of Microcrystalline Cellulose from Waste-Cotton Fabric for Biodegradability Enhancement of Natural Rubber Sheets , 2009 .

[16]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[17]  B. Dawson-Andoh,et al.  Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. , 2009, Bioresource technology.

[18]  V. Favier,et al.  Tensile behavior of nanocomposites from latex and cellulose whiskers , 1996 .

[19]  J. Capadona,et al.  Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers , 2007 .

[20]  Y. Nishio,et al.  Controlling the Selective Light Reflection of a Cholesteric Liquid Crystal of (Hydroxypropyl)cellulose by Electrical Stimulation , 1998 .

[21]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[22]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[23]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[24]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[25]  H. Takagi,et al.  Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites , 2008 .

[26]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[27]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[28]  V. Álvarez,et al.  Extraction of cellulose and preparation of nanocellulose from sisal fibers , 2008 .

[29]  M. Sain,et al.  Processing of Cellulose Nanofiber-reinforced Composites , 2005 .

[30]  Satoshi Miyaguchi,et al.  Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays , 2009 .

[31]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[32]  Enyong Ding,et al.  Surface modification of cellulose nanocrystals , 2007 .

[33]  K. Oksman,et al.  Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials , 2007 .

[34]  Sung-Hoon Ahn,et al.  Recent Advances in the Application of Natural Fiber Based Composites , 2010 .

[35]  M. Jonoobi,et al.  Preparation of cellulose nanofibers with hydrophobic surface characteristics , 2010 .

[36]  Bei Wang,et al.  Dispersion of soybean stock‐based nanofiber in a plastic matrix , 2007 .

[37]  P. Stenius,et al.  Water‐in‐oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose , 2007 .

[38]  L. Berglund,et al.  Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde , 2007 .

[39]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[40]  K. Mörseburg,et al.  Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets , 2009 .

[41]  Sung-Hoon Ahn,et al.  Cellulose nano whiskers from grass of Korea , 2008 .

[42]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[43]  John Simonsen,et al.  Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes , 2008 .

[44]  D. Gray,et al.  Dispersion of cellulose nanocrystals in polar organic solvents , 2007 .

[45]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[46]  Liping Zhang,et al.  New Nanocomposite Materials Dispersed with Poly(Ethylene Glycol): The Effects of Degradation and Mechanical Characteristics , 2010, 2010 4th International Conference on Bioinformatics and Biomedical Engineering.

[47]  Alain Dufresne,et al.  Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils , 1997 .

[48]  Kristiina Oksman,et al.  Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement , 2006 .

[49]  Svetla Petrova,et al.  An effective method for bioconversion of delignified waste-cellulose fibers from the paper industry with a cellulase complex , 2000 .

[50]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[51]  P. Kulpiński Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method , 2005 .

[52]  Hiroyuki Yano,et al.  Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network , 2004 .

[53]  T. Teeri,et al.  The Cellulases Endoglucanase I and Cellobiohydrolase II of Trichoderma reesei Act Synergistically To Solubilize Native Cotton Cellulose but Not To Decrease Its Molecular Size , 1996, Applied and environmental microbiology.

[54]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[55]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[56]  J. Putaux,et al.  Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. , 2009 .

[57]  K. Oksman,et al.  All Cellulose Nanocomposites Produced by Extrusion , 2007 .

[58]  M. Sain,et al.  Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties , 2008 .

[59]  Wen Bai,et al.  A technique for production of nanocrystalline cellulose with a narrow size distribution , 2009 .

[60]  A. Dufresne,et al.  Nanocomposite Polymer Electrolytes Based on Poly(oxyethylene) and Cellulose Nanocrystals , 2004 .

[61]  A. Dufresne,et al.  Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites , 2010 .

[62]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[63]  F. Traina,et al.  EUROPE ATTACKS SICILIAN SULFUR CRISIS , 1962 .

[64]  Birgit Braun,et al.  Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime. , 2008, Biomacromolecules.

[65]  Fanica Mustata,et al.  Cellulose extraction from orange peel using sulfite digestion reagents. , 2011, Bioresource technology.

[66]  Anand R. Sanadi,et al.  Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps , 2009 .

[67]  L. Drzal,et al.  PREPARATION AND PROPERTIES OF MICROFIBRILLATED CELLULOSE POLYVINYL ALCOHOL COMPOSITE MATERIALS , 2008 .

[68]  Youssef Habibi,et al.  Electrospun nanocomposites from polystyrene loaded with cellulose nanowhiskers , 2009 .

[69]  H. Yano,et al.  The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites , 2009 .