High-z massive clusters as a test for dynamical coupled dark energy

The recent detection by Jee et al. of the massive cluster XMMU J2235.3−2557 at a redshift z≈ 1.4, with an estimated mass M324= (6.4 ± 1.2) × 1014 M⊙, has been claimed to be a possible challenge to the standard ΛCDM cosmological model. More specifically, the probability to detect such a cluster has been estimated to be ∼0.005 if a ΛCDM model with Gaussian initial conditions is assumed, resulting in a 3σ discrepancy from the standard cosmological model. In this Letter we propose to use high-redshift clusters as the one detected in Jee et al. to compare the cosmological constant scenario with interacting dark energy models. We show that coupled dark energy models, where an interaction is present between dark energy and cold dark matter, can significantly enhance the probability to observe very massive clusters at high redshift.

[1]  D. Holz,et al.  THE MOST MASSIVE OBJECTS IN THE UNIVERSE , 2010, 1004.5349.

[2]  M. Viel,et al.  The impact of coupled dark energy cosmologies on the high-redshift intergalactic medium , 2010, 1007.3736.

[3]  J. Silk,et al.  Probability of the most massive cluster under non-Gaussian initial conditions , 2010, 1006.1950.

[4]  M. Baldi Time-dependent couplings in the dark sector: from background evolution to non-linear structure formation , 2010, 1005.2188.

[5]  V. Pettorino,et al.  Clarifying spherical collapse in coupled dark energy cosmologies , 2010, 1005.1278.

[6]  V. Pettorino,et al.  Very large scale structures in growing neutrino quintessence , 2009, 0910.4985.

[7]  M. Nonino,et al.  Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1 , 2009, 0910.1716.

[8]  IfA,et al.  The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.

[9]  L. Verde,et al.  Implications for primordial non-Gaussianity (f NL ) from weak lensing masses of high-z galaxy clusters , 2009, 0909.0403.

[10]  K. Dawson,et al.  HUBBLE SPACE TELESCOPE WEAK-LENSING STUDY OF THE GALAXY CLUSTER XMMU J2235.3 − 2557 AT z ∼ 1.4: A SURPRISINGLY MASSIVE GALAXY CLUSTER WHEN THE UNIVERSE IS ONE-THIRD OF ITS CURRENT AGE , 2009, 0908.3897.

[11]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[12]  L. Colombo,et al.  Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy , 2009, 0902.2711.

[13]  M. Hudson,et al.  Consistently large cosmic flows on scales of 100 h−1 Mpc: a challenge for the standard ΛCDM cosmology , 2008, 0809.4041.

[14]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[15]  V. Pettorino,et al.  Hydrodynamical N-body simulations of coupled dark energy cosmologies , 2008, 0812.3901.

[16]  M. Trodden,et al.  Constraining Interactions in Cosmology's Dark Sector , 2008, 0808.1105.

[17]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[18]  C. Baccigalupi,et al.  Coupled and extended quintessence: Theoretical differences and structure formation , 2008, 0802.1086.

[19]  L. Moscardini,et al.  Evolution of massive haloes in non-Gaussian scenarios , 2007, 0707.2516.

[20]  S. Bonometto,et al.  Mass functions in coupled dark energy models , 2006, astro-ph/0605621.

[21]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[22]  M. Manera,et al.  Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter , 2005, astro-ph/0504519.

[23]  L. Amendola,et al.  Coupled dark energy: Parameter constraints from N-body simulations , 2004 .

[24]  V. Pettorino,et al.  Coupled quintessence and the coincidence problem , 2002, astro-ph/0212518.

[25]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[26]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[27]  The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.

[28]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[29]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.