Biotransformation of Xenobiotic Compounds: Microbial Approach

[1]  A. Stams,et al.  Degradation of BTEX by anaerobic bacteria: physiology and application , 2010 .

[2]  D. Bandyopadhyay,et al.  Microbial transformation of xenobiotics for environmental bioremediation , 2009 .

[3]  B. Cao,et al.  Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches , 2009, Applied Microbiology and Biotechnology.

[4]  L. Gianfreda,et al.  Interactions Between Xenobiotics and Microbial and Enzymatic Soil Activity , 2008 .

[5]  A. Chaudhari,et al.  Microbial remediation of nitro-aromatic compounds: an overview. , 2007, Journal of environmental management.

[6]  David E. Crowley,et al.  Microbial Diversity in Natural Asphalts of the Rancho La Brea Tar Pits , 2007, Applied and Environmental Microbiology.

[7]  M. Hofrichter,et al.  Enzymatic hydroxylation of aromatic compounds , 2007, Cellular and Molecular Life Sciences.

[8]  A. Dobson,et al.  Cloning and Functional Characterization of the styE Gene, Involved in Styrene Transport in Pseudomonas putida CA-3 , 2006, Applied and Environmental Microbiology.

[9]  J. Bolin,et al.  The Ins and Outs of Ring-Cleaving Dioxygenases , 2006, Critical reviews in biochemistry and molecular biology.

[10]  Jan Roelof van der Meer,et al.  Bacterial Transcriptional Regulators for Degradation Pathways of Aromatic Compounds , 2004, Microbiology and Molecular Biology Reviews.

[11]  Jing Ye,et al.  Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics , 2004 .

[12]  Owen P. Ward,et al.  Recent Advances in Petroleum Microbiology , 2003, Microbiology and Molecular Biology Reviews.

[13]  R. Barra,et al.  Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32 , 2003, Biodegradation.

[14]  K. van Pée,et al.  Biological dehalogenation and halogenation reactions. , 2003, Chemosphere.

[15]  Jo Handelsman,et al.  Biotechnological prospects from metagenomics. , 2003, Current opinion in biotechnology.

[16]  T. Omori,et al.  Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation , 2002, Applied Microbiology and Biotechnology.

[17]  S. Harayama,et al.  The TOL Plasmid pWW0 xylN Gene Product fromPseudomonas putida Is Involved inm-Xylene Uptake , 2001, Journal of bacteriology.

[18]  C. Cerniglia,et al.  Molecular Cloning, Nucleotide Sequence, and Expression of Genes Encoding a Polycyclic Aromatic Ring Dioxygenase from Mycobacterium sp. Strain PYR-1 , 2001, Applied and Environmental Microbiology.

[19]  M. Fukuda,et al.  Characterization of the 450-kb Linear Plasmid in a Polychlorinated Biphenyl Degrader, Rhodococcus sp. Strain RHA1 , 2001, Applied and Environmental Microbiology.

[20]  D. Janssen,et al.  Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. , 2000, Current opinion in microbiology.

[21]  R. H. Olsen,et al.  Characterization and Role of tbuX in Utilization of Toluene by Ralstonia pickettii PKO1 , 2000, Journal of bacteriology.

[22]  P. Fox,et al.  Purification and characterization of an extracellular esterase from Arthrobacter nicotianae 9458. , 2000 .

[23]  G. Lloyd-Jones,et al.  Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils , 1999 .

[24]  J. Leveau,et al.  The tfdK Gene Product Facilitates Uptake of 2,4-Dichlorophenoxyacetate by Ralstonia eutrophaJMP134(pJP4) , 1998, Journal of bacteriology.

[25]  H. Knackmuss Basic knowledge and perspectives of bioelimination of xenobiotic compounds , 1996 .

[26]  J. Tiedje,et al.  Gene probe analysis of soil microbial populations selected by amendment with 2,4-dichlorophenoxyacetic acid , 1992, Applied and environmental microbiology.

[27]  G. Chaudhry,et al.  Biodegradation of halogenated organic compounds , 1991, Microbiological reviews.

[28]  O. Meyer,et al.  Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2 , 1990, Applied and environmental microbiology.

[29]  A. Khan,et al.  Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments , 1990, Applied and environmental microbiology.

[30]  Dick B. Janssen,et al.  Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10 , 1985, Applied and environmental microbiology.

[31]  R. H. Don,et al.  Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus , 1981, Journal of bacteriology.

[32]  R. Horvath Microbial co-metabolism and the degradation of organic compounds in nature. , 1972, Bacteriological reviews.

[33]  I. Greń Mikrobiologiczne przemiany ksenobiotyków , 2012 .

[34]  I. Greń,et al.  Enrichment, isolation and susceptibility profile of the growth substrate of bacterial strains able to degrade vinyl acetate. , 2009 .

[35]  C. Cokmus,et al.  Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains , 2008, Journal of Industrial Microbiology & Biotechnology.

[36]  K. Demnerova,et al.  Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene , 2008, Folia Microbiologica.

[37]  R. Jain,et al.  Microbial diversity : Application of micro-organisms for the biodegradation of xenobiotics , 2005 .

[38]  K. Itoh,et al.  Phenolic acids affect transformations of chlorophenols by a Coriolus versicolor laccase , 2000 .

[39]  Caroline S. Harwood,et al.  THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY , 1996 .