Solution Processing and Resist‐Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration

Organic polymer materials are widely credited with extreme versatility for thin film device processing. However, they generally lack the high refractive indices of inorganic semiconductors essential for tight optical confinement in planar integrated photonic circuits. Inorganic–organic hybrid photonic systems overcome these limits by combining both types of materials, although such hybrid integration remains challenging given the vastly different properties of the two types of materials. In this paper, a new approach is used to realize inorganic–organic hybrid photonics using chalcogenide glass (ChG) materials. Known as an amorphous semiconductor, the glass possesses high refractive indices, and can be prepared in a thin film form through solution deposition and patterned via direct thermal nanoimprinting, processing methods traditionally exclusive to polymer materials only. Sub‐micrometer waveguides, microring resonators, and diffraction gratings fabricated from solution processed (SP) ChG films can be monolithically integrated with organic polymer substrates to create mechanically flexible, high‐index‐contrast photonic devices. The resonators exhibit a high quality factor (Q‐factor) of 80 000 near 1550 nm wavelength. Free‐standing, flexible ChG gratings whose diffraction properties can be readily tailored by conformal integration on nonplanar surfaces are also demonstrated.

[1]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[2]  Candice Tsay,et al.  Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. , 2010, Optics express.

[3]  B. H. Liu,et al.  Controlling the crystallinity and nonlinear optical properties of transparent TiO2–PMMA nanohybrids , 2004 .

[4]  T. Wágner,et al.  Physico-chemical properties of spin-coated Ag–As–Sb–S films , 2005 .

[5]  Larry R. Dalton,et al.  Polymer-based optical waveguides: Materials, processing, and devices , 2002 .

[6]  Steve Madden,et al.  Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography. , 2010, Optics express.

[7]  Yasuo Tomita,et al.  Highly transparent ZrO(2) nanoparticle-dispersed acrylate photopolymers for volume holographic recording. , 2006, Optics express.

[8]  Kimmo Paivasaari,et al.  Imprinting the nanostructures on the high refractive index semiconductor glass , 2011 .

[9]  Zhenwu Lu,et al.  Lithographic fabrication of large diffractive optical elements on a concave lens surface. , 2002, Optics express.

[10]  M. Frumar,et al.  Spin-coated As33S67−xSex thin films: the effect of annealing on structure and optical properties , 2006 .

[11]  Craig B. Arnold,et al.  A review on solution processing of chalcogenide glasses for optical components , 2013 .

[12]  J. David Musgraves,et al.  Composition dependence of the viscosity and other physical properties in the arsenic selenide glass system , 2011 .

[13]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[14]  Angela B. Seddon,et al.  Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres , 2004 .

[15]  Keiji Tanaka Photoinduced structural changes in amorphous semiconductors , 1998 .

[16]  Pao Tai Lin,et al.  Inverted-Rib Chalcogenide Waveguides by Solution Process , 2014 .

[17]  C. Arnold,et al.  Pore formation and removal in solution-processed amorphous arsenic sulfide films , 2013 .

[18]  G. Calafiore,et al.  A route for fabricating printable photonic devices with sub-10 nm resolution , 2013, Nanotechnology.

[19]  J. Nishii,et al.  Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass. , 2011, Optics letters.

[20]  C. Pantano,et al.  Solution/gelation of arsenic trisulfide in amine solvents , 1989 .

[21]  Jacques Lucas,et al.  A Family of Far‐Infrared‐Transmitting Glasses in the Ga–Ge–Te System for Space Applications , 2006 .

[22]  T. Harada,et al.  Mechanically ruled aberration-corrected concave gratings. , 1980, Applied optics.

[23]  Tomas Kohoutek,et al.  Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films. , 2009, Optics letters.

[24]  K. Saravanamuttu,et al.  Modulation instability of incandescent light in a photopolymer doped with Ag nanoparticles , 2012 .

[25]  Yong Chen,et al.  Roll in and roll out: a path to high-throughput nanoimprint lithography. , 2009, ACS nano.

[26]  Jacklyn Novak,et al.  Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films , 2012 .

[27]  Trevor M. Benson,et al.  One-step hot embossing of optical rib waveguides in chalcogenide glasses , 2008 .

[28]  M. Haney,et al.  A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects , 2013, Journal of Lightwave Technology.

[29]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[30]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[31]  G. Wegner,et al.  Optical properties of composites of PMMA and surface-modified zincite nanoparticles , 2007 .

[32]  Chao‐Ching Chang,et al.  Synthesis and Optical Properties of Soluble Polyimide/Titania Hybrid Thin Films , 2006 .

[33]  Chung-Yen Chao,et al.  Polymer microring resonators fabricated by nanoimprint technique , 2002 .

[34]  Paras N. Prasad,et al.  Sol−Gel-Processed SiO2/TiO2/Poly(vinylpyrrolidone) Composite Materials for Optical Waveguides , 1996 .

[35]  Shyam Singh,et al.  Diffraction gratings: aberrations and applications , 1999 .

[36]  Hiroshi Fudouzi,et al.  Soft imprint lithography of a bulk chalcogenide glass , 2011 .

[37]  L. Eldada,et al.  Advances in polymer integrated optics , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Fatima Toor,et al.  Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits. , 2010, Optics letters.

[39]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[40]  T. Wágner,et al.  Surface morphology of spin-coated As–S–Se chalcogenide thin films , 2007 .

[41]  W C Cash Aspheric concave grating spectrographs. , 1984, Applied optics.

[42]  Bai Yang,et al.  High refractive index thin films of ZnS/polythiourethane nanocomposites , 2003 .

[43]  Christi K. Madsen,et al.  Patterning chalcogenide glass by direct resist-free thermal nanoimprint , 2008 .

[44]  L. Guo,et al.  High‐Speed Roll‐to‐Roll Nanoimprint Lithography on Flexible Plastic Substrates , 2008 .

[45]  Craig B. Arnold,et al.  Solution-processing of thick chalcogenide-chalcogenide and metal-chalcogenide structures by spin-coating and multilayer lamination , 2013 .

[46]  Trevor M. Benson,et al.  Fine embossing of chalcogenide glasses - : a new fabrication route for photonic integrated circuits , 2006 .