Stability and resource allocation in project planning

The majority of resource-constrained project scheduling efforts assume perfect information about the scheduling problem to be solved and a static deterministic environment within which the precomputed baseline schedule is executed. In reality, project activities are subject to considerable uncertainty, which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed resource allocation problem. We report on computational results obtained on a set of benchmark problems.

[1]  Wpm Wim Nuijten,et al.  Time and resource constrained scheduling : a constraint satisfaction approach , 1994 .

[2]  J. D. Wiest,et al.  Management Guide to PERT/CPM , 1969 .

[3]  Reha Uzsoy,et al.  Predictable scheduling of a job shop subject to breakdowns , 1998, IEEE Trans. Robotics Autom..

[4]  Ulrich Dorndorf,et al.  Project Scheduling with Time Windows , 2002 .

[5]  F. J. Radermacher,et al.  Chapter 4 – THE ORDER-THEORETIC APPROACH TO SCHEDULING: THE STOCHASTIC CASE , 1989 .

[6]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[7]  Genaro J. Gutierrez,et al.  Parkinson's Law and Its Implications for Project Management , 1991 .

[8]  Vidyadhar G. Kulkarni,et al.  A classified bibliography of research on stochastic PERT networks: 1966-1987 , 1989 .

[9]  Franz Josef Radermacher,et al.  Algorithmic approaches to preselective strategies for stochastic scheduling problems , 1983, Networks.

[10]  H.C.P.M. van Iersel Time and resource constrained scheduling : a case study in production planning , 1994 .

[11]  Gautam Mitra,et al.  Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..

[12]  G. NAEGLER,et al.  Chapter 8 – RESOURCE ALLOCATION IN A NETWORK MODEL - THE LEINET SYSTEM , 1989 .

[13]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[14]  Salah E. Elmaghraby,et al.  Activity networks: Project planning and control by network models , 1977 .

[15]  Christian Artigues,et al.  Insertion Techniques for On and Off-Line Resource Constrained Project Scheduling , 2000 .

[16]  Christian Artigues,et al.  A polynomial activity insertion algorithm in a multi-resource schedule with cumulative constraints and multiple modes , 2000, Eur. J. Oper. Res..

[17]  CLASSIFIED BIBLIOGRAPHY,et al.  Classified Bibliography , 1897 .

[18]  Erik Demeulemeester,et al.  A branch-and-bound procedure for the multiple resource-constrained project scheduling problem , 1992 .

[19]  Erik Demeulemeester,et al.  RanGen: A Random Network Generator for Activity-on-the-Node Networks , 2003, J. Sched..

[20]  Willy Herroelen,et al.  A model for robust resource allocation in project scheduling , 2001 .

[21]  John Bowers,et al.  Criticality in Resource Constrained Networks , 1995 .

[22]  Pei-Chann Chang,et al.  One-machine rescheduling heuristics with efficiency and stability as criteria , 1993, Comput. Oper. Res..

[23]  Willy Herroelen,et al.  The construction of stable project baseline schedules , 2004, Eur. J. Oper. Res..

[24]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[25]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[26]  Bettina Rockenbach Springer Lecture Notes in Economics and Mathematical Systems , 1994 .

[27]  Roman Słowiński,et al.  Advances in project scheduling , 1989 .

[28]  Mark M. Klein,et al.  Scheduling project networks , 1967, CACM.

[29]  Franz Josef Radermacher,et al.  Preselective strategies for the optimization of stochastic project networks under resource constraints , 1983, Networks.

[30]  Erik Demeulemeester,et al.  New Benchmark Results for the Resource-Constrained Project Scheduling Problem , 1997 .

[31]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[32]  Rolf H. Möhring,et al.  Scheduling project networks with resource constraints and time windows , 1988 .

[33]  Reha Uzsoy,et al.  Executing production schedules in the face of uncertainties: A review and some future directions , 2005, Eur. J. Oper. Res..

[34]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[35]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[36]  George S. Fishman,et al.  Characterizing stochastic flow networks using the monte carlo method , 1991, Networks.

[37]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[38]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[39]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[40]  Christian Artigues,et al.  Insertion techniques for static and dynamic resource-constrained project scheduling , 2003, Eur. J. Oper. Res..

[41]  Frederik Stork,et al.  Stochastic resource-constrained project scheduling , 2001 .

[42]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[43]  W. Hopper,et al.  Insertion techniques. , 1995, Primary care.

[44]  Rolf H. Möhring,et al.  Scheduling under Uncertainty: Bounding the Makespan Distribution , 2001, Computational Discrete Mathematics.

[45]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[46]  M. Selim Akturk,et al.  Match-up scheduling under a machine breakdown , 1999, Eur. J. Oper. Res..

[47]  Erwin Pesch,et al.  Constraint propagation techniques for the disjunctive scheduling problem , 2000, Artif. Intell..