The role of surfactants in induced electrodeposition of Zn–Mo layer from citrate solutions

[1]  P. Ozga,et al.  Effect of different organic additives on surface morphology and microstructureof Zn-Mo coatings electrodeposited from citrate baths , 2023, Archives of Metallurgy and Materials.

[2]  A. Basu,et al.  Evolution and structure-property correlation of CTAB assisted high hardness electrodeposited Cu-ZrO2 nano-cone arrays , 2017 .

[3]  P. Ozga,et al.  Electrodeposition of Zn-Mn-Mo layers from citrate-based aqueous electrolytes , 2016 .

[4]  K. Berent,et al.  Microstructure and micromechanical properties of electrodeposited Zn–Mo coatings on steel , 2015 .

[5]  K. Das,et al.  Effect of various additives on morphological and structural characteristics of pulse electrodeposited tin coatings from stannous sulfate electrolyte , 2014 .

[6]  J. Liang,et al.  Preparation of superhydrophobic zinc coating for corrosion protection , 2014 .

[7]  Xu Liu,et al.  The effects of additives on the electrowinning of zinc from sulphate solutions with high fluoride concentration , 2014 .

[8]  M. F. D. Carvalho,et al.  Zinc electrodeposition from alkaline solution containing trisodium nitrilotriacetic added , 2013 .

[9]  E. Bielanska,et al.  Characterisation of Zn–Mo alloy layers electrodeposited from aqueous citrate solution , 2013 .

[10]  I. Carlos,et al.  Influence of disodium ethylenediaminetetraacetate on zinc electrodeposition process and on the morphology, chemical composition and structure of the electrodeposits , 2013 .

[11]  R. Socha,et al.  Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions , 2013 .

[12]  Guangjie Shao,et al.  The effect of surfactant on the structure and properties of ZnO films prepared by electrodeposition , 2012 .

[13]  S. Saidman,et al.  Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition , 2012 .

[14]  T. V. Venkatesha,et al.  Effect of surfactants on co-deposition of B4C nanoparticles in Zn matrix by electrodeposition and its corrosion behavior , 2012 .

[15]  T. Chapman,et al.  Effects of organic additives on zinc electrodeposition from alkaline electrolytes , 2012, Journal of Applied Electrochemistry.

[16]  E. Podlaha,et al.  Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition , 2011 .

[17]  Y. Meas,et al.  Electrodeposition and corrosion behavior of Zn coatings formed using as brighteners arene additives of different structure , 2011 .

[18]  S. K. Mehta,et al.  Growth, stability, optical and photoluminescent properties of aqueous colloidal ZnS nanoparticles in relation to surfactant molecular structure. , 2011, Journal of colloid and interface science.

[19]  H. Usui Electrochemical self-assembly synthesis of zinc oxide nanoparticles and lamellar-structured organic/inorganic hybrids by electrodeposition in surfactant solution , 2011 .

[20]  Asad Muhammad Khan,et al.  Determination of Critical Micelle Concentration (Cmc) of Sodium Dodecyl Sulfate (SDS) and the Effect of Low Concentration of Pyrene on its Cmc Using ORIGIN Software , 2011 .

[21]  Shigeo Kobayashi,et al.  Effect of Preadsorption of Polyethylene Glycol on the Appearance and Morphology of Electrogalvanized Steel Sheets , 2009 .

[22]  M. Pushpavanam,et al.  Voltammetric Studies on the Role of Additives in Bright Zinc Electrodeposition from an Alkaline Non-Cyanide Bath , 2009 .

[23]  E. Gileadi,et al.  Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals , 2008 .

[24]  J. C. Ballesteros,et al.  Zinc electrodeposition in the presence of polyethylene glycol 20000 , 2007 .

[25]  C. A. Souza,et al.  The influence of sorbitol on zinc film deposition, zinc dissolution process and morphology of deposits obtained from alkaline bath , 2006 .

[26]  A. Gomes,et al.  Pulsed electrodeposition of Zn in the presence of surfactants , 2006 .

[27]  E. Vallés,et al.  Intermediate molybdenum oxides involved in binary and ternary induced electrodeposition , 2005 .

[28]  G. Luo,et al.  Interaction of PEG with ionic surfactant SDS to form template for mesoporous material , 2005 .

[29]  V. Vivier,et al.  EIS investigation of zinc dissolution in aerated sulphate medium. Part II: zinc coatings , 2002 .

[30]  Y. Meas,et al.  Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions , 2001 .

[31]  A. Jephcoat,et al.  Pressure shift of the zone-center TO mode of Zn , 2000 .

[32]  M. Chandran,et al.  ZINC ELECTRODEPOSITION FROM BROMIDE ELECTROLYTES : EFFECT OF ADDITIVES , 1999 .

[33]  E. Podlaha,et al.  Induced Codeposition III. Molybdenum Alloys with Nickel, Cobalt, and Iron , 1997 .

[34]  F. Galvani,et al.  The effect of the additive glycerol on zinc electrodeposition on steel , 1997 .

[35]  R. Winand Electrocrystallization: Fundamental considerations and application to high current density continuous steel sheet plating , 1991 .

[36]  E. Chassaing,et al.  Mechanism of nickel-molybdenum alloy electrodeposition in citrate electrolytes , 1989 .

[37]  E. J. Mittemeijer,et al.  Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening , 1982 .

[38]  Hisaaki Fukushima,et al.  Role of Iron-group Metals in the Induced Codeposition of Molybdenum from Aqueous Solution , 1978 .

[39]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons , 1967 .

[40]  A. Brenner,et al.  Electrodeposition of Alloys , 1964 .

[41]  Enrico Clementi,et al.  Atomic Screening Constants from SCF Functions , 1963 .

[42]  R. Amlie,et al.  Electrodeposition of Molydenum Alloys from Aqueous Solutions , 1955 .