Various topological phases and their abnormal effects of topological acoustic metamaterials

The last 20 years have witnessed growing impacts of the topological concept on the branches of physics, including materials, electronics, photonics, and acoustics. Topology describes objects with some global invariant property under continuous deformation, which in mathematics could date back to the 17th century and mature in the 20th century. In physics, it successfully underpinned the physics of the Quantum Hall effect in 1984. To date, topology has been extensively applied to describe topological phases in acoustic metamaterials. As artificial structures, acoustic metamaterials could be well theoretically analyzed, on‐demand designed, and easily fabricated by modern techniques, such as three‐dimensional printing. Some new theoretical topological models were first discovered in acoustic metamaterials analogous to electronic counterparts, associated with novel effects for acoustics closer to applications. In this review, we focused on the concept of topology and its realization in airborne acoustic crystals, solid elastic phononic crystals, and surface acoustic wave systems. We also introduced emerging concepts of non‐Hermitian, higher‐order, and Floquet topological insulators in acoustics. It has been shown that the topology theory has such a powerful generality that among the disciplines from electron to photon and phonon, from electronic to photonics and acoustics, from acoustic topological theory to acoustic devices, could interact and be analogous to fertilize fantastic new ideas and prototype devices, which might find applications in acoustic engineering and noise‐vibration control engineering in the near future.

[1]  Jiuyang Lu,et al.  Non-Hermitian second-order topology induced by resistances in electric circuits , 2022, Physical Review B.

[2]  Yan-Feng Chen,et al.  A review on non-Hermitian skin effect , 2022, Advances in Physics: X.

[3]  Chunyin Qiu,et al.  Tracking Valley Topology with Synthetic Weyl Paths. , 2022, Physical review letters.

[4]  Flore K. Kunst,et al.  Symmetry-protected exceptional and nodal points in non-Hermitian systems , 2022, SciPost Physics.

[5]  Guancong Ma,et al.  Non-Hermitian topology and exceptional-point geometries , 2022, Nature Reviews Physics.

[6]  Wen-Jie Chen,et al.  Symmetry-protected topological exceptional chains in non-Hermitian crystals , 2022, Communications Physics.

[7]  Lechen Yang,et al.  Topological-cavity surface-emitting laser , 2022, Nature Photonics.

[8]  Cheng He,et al.  Experimental Demonstration of Bulk-Hinge Correspondence in a Three-Dimensional Topological Dirac Acoustic Crystal. , 2022, Physical review letters.

[9]  Ming-Hui Lu,et al.  Extended topological valley-locked surface acoustic waves , 2022, Nature communications.

[10]  Yan-Feng Chen,et al.  Competition between band topology and non-Hermiticity , 2022, Physical Review B.

[11]  Baile Zhang,et al.  Higher-order Dirac semimetal in a photonic crystal , 2022, Physical Review B.

[12]  A. T. Johnson,et al.  Gigahertz topological valley Hall effect in nanoelectromechanical phononic crystals , 2022, Nature Electronics.

[13]  Guancong Ma,et al.  Experimental realization of non-Abelian permutations in a three-state non-Hermitian system , 2021, National science review.

[14]  Luyao Jiang,et al.  Measuring the knot of non-Hermitian degeneracies and non-commuting braids , 2021, Nature.

[15]  Shengyuan A. Yang,et al.  Projectively Enriched Symmetry and Topology in Acoustic Crystals. , 2021, Physical review letters.

[16]  Chunyin Qiu,et al.  Acoustic Möbius Insulators from Projective Symmetry. , 2021, Physical review letters.

[17]  Zhengyou Liu,et al.  Topological dislocation modes in three-dimensional acoustic topological insulators , 2021, Nature communications.

[18]  Y. Chong,et al.  Time-periodic corner states from Floquet higher-order topology , 2020, Nature Communications.

[19]  O. Painter,et al.  Topological phonon transport in an optomechanical system , 2020, Nature Communications.

[20]  Fei Gao,et al.  Topological acoustics. , 2014, Physical review letters.

[21]  C. T. Chan,et al.  Classical non-Abelian braiding of acoustic modes , 2021, Nature Physics.

[22]  Ze-Guo Chen,et al.  Topological pumping in acoustic waveguide arrays with hopping modulation , 2021, New Journal of Physics.

[23]  Yan-Feng Chen,et al.  Tunable Topological Surface States of Three-Dimensional Acoustic Crystals , 2021, Frontiers in Physics.

[24]  Yi-Xin Xiao,et al.  Topology in non-Hermitian Chern insulators with skin effect , 2021, 2111.02648.

[25]  Zhigang Chen,et al.  Realization of Second-Order Photonic Square-Root Topological Insulators , 2021, ACS Photonics.

[26]  Li-Yang Zheng,et al.  Dirac Hierarchy in Acoustic Topological Insulators. , 2021, Physical review letters.

[27]  Yan-Feng Chen,et al.  Topological Surface Acoustic Waves , 2021, Physical Review Applied.

[28]  M. Segev,et al.  Topological insulator vertical-cavity laser array , 2021, Science.

[29]  Xiaoming Mao,et al.  Topological floppy modes in models of epithelial tissues. , 2021, Soft matter.

[30]  Li-Yang Zheng,et al.  Non-Hermitian topological whispering gallery , 2021, Nature.

[31]  E. Prodan,et al.  Creating synthetic spaces for higher-order topological sound transport , 2021, Nature Communications.

[32]  A. Khanikaev,et al.  Nonlocal topological insulators: Deterministic aperiodic arrays supporting localized topological states protected by nonlocal symmetries , 2021, Proceedings of the National Academy of Sciences.

[33]  Jensen Li,et al.  Topological Corner Modes Induced by Dirac Vortices in Arbitrary Geometry. , 2021, Physical review letters.

[34]  R. Morandotti,et al.  Nonlinear control of photonic higher-order topological bound states in the continuum , 2021, Light, science & applications.

[35]  Jian‐Hua Jiang,et al.  Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal , 2021, Nature Materials.

[36]  B. Jiang,et al.  Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions , 2021, Nature Physics.

[37]  L. Torner,et al.  Nonlinear second-order photonic topological insulators , 2021, Nature Physics.

[38]  Yan-Feng Chen,et al.  Valley-Selective Topological Corner States in Sonic Crystals. , 2021, Physical review letters.

[39]  C. Guan,et al.  Realization of quasicrystalline quadrupole topological insulators in electrical circuits , 2021, Communications Physics.

[40]  Ming-Hui Lu,et al.  Observation of higher-order non-Hermitian skin effect , 2021, Nature Communications.

[41]  Xueqin Huang,et al.  Higher-order topological semimetal in acoustic crystals , 2021, Nature Materials.

[42]  Ze-Guo Chen,et al.  Landau-Zener Transition in the Dynamic Transfer of Acoustic Topological States. , 2021, Physical review letters.

[43]  Jingwen Ma,et al.  Experimental Demonstration of Dual‐Band Nano‐Electromechanical Valley‐Hall Topological Metamaterials , 2021, Advanced materials.

[44]  F. Song,et al.  Non-Bloch PT symmetry breaking: Universal threshold and dimensional surprise , 2021, 2102.02230.

[45]  Ze-Guo Chen,et al.  Acoustic Realization of a Four-Dimensional Higher-Order Chern Insulator and Boundary-Modes Engineering , 2021 .

[46]  Jingwen Ma,et al.  Observation of chiral edge states in gapped nanomechanical graphene , 2021, Science Advances.

[47]  Chunyin Qiu,et al.  Higher-Order Dirac Sonic Crystals. , 2020, Physical review letters.

[48]  F. Semperlotti,et al.  Synthetic Kramers Pair in Phononic Elastic Plates and Helical Edge States on a Dislocation Interface , 2020, Advanced materials.

[49]  Shinsei Ryu,et al.  Topological Field Theory of Non-Hermitian Systems. , 2020, Physical review letters.

[50]  B. Jiang,et al.  Observation of a phononic higher-order Weyl semimetal , 2020, Nature Materials.

[51]  Y. Chong,et al.  Floquet higher-order topological insulator in a periodically driven bipartite lattice , 2020, 2010.03879.

[52]  Shengyuan A. Yang,et al.  Switching Spinless and Spinful Topological Phases with Projective PT Symmetry. , 2020, Physical review letters.

[53]  P. Xue,et al.  Observation of Non-Bloch Parity-Time Symmetry and Exceptional Points. , 2020, Physical review letters.

[54]  Houjun Sun,et al.  Experimental Observation of Higher-Order Topological Anderson Insulators. , 2020, Physical review letters.

[55]  Jie Zhu,et al.  Non-Hermitian route to higher-order topology in an acoustic crystal , 2020, Nature Communications.

[56]  Zhengyou Liu,et al.  Dirac points and the transition towards Weyl points in three-dimensional sonic crystals , 2020, Light: Science & Applications.

[57]  S. Louie,et al.  Direct observation of Klein tunneling in phononic crystals , 2020, Science.

[58]  C. T. Chan,et al.  Exceptional nexus with a hybrid topological invariant , 2020, Science.

[59]  Yan-Feng Chen,et al.  Classical higher-order topological insulators. , 2020, 2010.05802.

[60]  J. Wiersig Review of exceptional point-based sensors , 2020 .

[61]  Ming-Hui Lu,et al.  Higher-order quantum spin Hall effect in a photonic crystal , 2020, Nature Communications.

[62]  Andrea Alù,et al.  Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias , 2020, Science Advances.

[63]  Zhengyou Liu,et al.  Valley-locked waveguide transport in acoustic heterostructures , 2020, Nature Communications.

[64]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[65]  Ching Hua Lee,et al.  Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits , 2020, Nature Physics.

[66]  E. Prodan,et al.  Experimental Demonstration of Dynamic Topological Pumping across Incommensurate Bilayered Acoustic Metamaterials. , 2020, Physical review letters.

[67]  Zhengyou Liu,et al.  Acoustic Realization of Quadrupole Topological Insulators. , 2020, Physical review letters.

[68]  Yan-Feng Chen,et al.  Acoustic analogues of three-dimensional topological insulators , 2020, Nature Communications.

[69]  Jie Zhu,et al.  Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal , 2020, Physical Review B.

[70]  Jinkyu Yang,et al.  Spin-1 Weyl point and surface arc state in a chiral phononic crystal , 2020, 2004.02412.

[71]  A. Szameit,et al.  Topological funneling of light , 2020, Science.

[72]  Feng Li,et al.  Acoustic spin-1 Weyl semimetal , 2020, Science China Physics, Mechanics & Astronomy.

[73]  Xueqin Huang,et al.  Experimental characterization of fragile topology in an acoustic metamaterial , 2020, Science.

[74]  Zhengyou Liu,et al.  Experimental demonstration of acoustic semimetal with topologically charged nodal surface , 2020, Science Advances.

[75]  T. Cui,et al.  Gain- and Loss-Induced Topological Insulating Phase in a Non-Hermitian Electrical Circuit , 2020, Physical Review Applied.

[76]  Houjun Sun,et al.  Topolectrical-circuit realization of a four-dimensional hexadecapole insulator , 2020, 2001.07931.

[77]  Zhengyou Liu,et al.  Symmetry-enforced three-dimensional Dirac phononic crystals , 2020, Light: Science & Applications.

[78]  G. Bahl,et al.  A fractional corner anomaly reveals higher-order topology , 2020, Science.

[79]  Quan Zhang,et al.  Dirac degeneracy and elastic topological valley modes induced by local resonant states , 2020 .

[80]  T. Ozawa,et al.  Active topological photonics , 2019, Nanophotonics.

[81]  Ian A. D. Williamson,et al.  Higher-order topological insulators in synthetic dimensions , 2019, Light, science & applications.

[82]  M. Ruzzene,et al.  Edge states and topological pumping in stiffness-modulated elastic plates , 2019, Physical Review B.

[83]  Zhengyou Liu,et al.  Observation of quadratic Weyl points and double-helicoid arcs , 2019, Nature Communications.

[84]  Feng Li,et al.  Acoustic spin-Chern insulator induced by synthetic spin–orbit coupling with spin conservation breaking , 2019, Nature Communications.

[85]  K. Kawabata,et al.  Topological Origin of Non-Hermitian Skin Effects. , 2019, Physical review letters.

[86]  C. Fang,et al.  Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. , 2019, Physical review letters.

[87]  Kunkun Wang,et al.  Non-Hermitian bulk–boundary correspondence in quantum dynamics , 2019, Nature Physics.

[88]  A. Khanikaev,et al.  Demonstration of a 3rd order hierarchy of topological states in a three-dimensional acoustic metamaterial (Conference Presentation) , 2019, Metamaterials, Metadevices, and Metasystems 2019.

[89]  Dan S. Borgnia,et al.  Non-Hermitian Boundary Modes and Topology. , 2019, Physical review letters.

[90]  E. Verhagen,et al.  Synthetic gauge fields for phonon transport in a nano-optomechanical system , 2018, Nature Nanotechnology.

[91]  Yan-Feng Chen,et al.  Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals , 2018, Nature Communications.

[92]  N. Mitchell,et al.  Tunable Band Topology in Gyroscopic Lattices , 2018, Springer Theses.

[93]  Jie Zhu,et al.  Chirality-assisted three-dimensional acoustic Floquet lattices , 2019 .

[94]  G. Genin,et al.  Programmable and robust static topological solitons in mechanical metamaterials , 2019, Nature Communications.

[95]  Jun Mei,et al.  Robust and High-Capacity Phononic Communications through Topological Edge States by Discrete Degree-of-Freedom Multiplexing , 2019 .

[96]  Y. Chong,et al.  Quantized octupole acoustic topological insulator , 2019 .

[97]  Yan-Feng Chen,et al.  Hybrid Acoustic Topological Insulator in Three Dimensions. , 2019, Physical Review Letters.

[98]  Y. Chong,et al.  Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal , 2019, Nature Communications.

[99]  D. Carpentier,et al.  Topological Elasticity of Nonorientable Ribbons , 2019, Physical Review X.

[100]  S. Longhi,et al.  Non-Hermitian topological light steering , 2019, Science.

[101]  Ying Wu,et al.  Corner states in a second-order acoustic topological insulator as bound states in the continuum , 2019, Physical Review B.

[102]  Yong Xu,et al.  Three-Dimensional Topological States of Phonons with Tunable Pseudospin Physics , 2018, Research.

[103]  Xiaoming Mao,et al.  Topological Boundary Floppy Modes in Quasicrystals , 2019, Physical Review X.

[104]  Farzad Zangeneh-Nejad,et al.  Nonlinear Second-Order Topological Insulators. , 2019, Physical review letters.

[105]  E. Prodan,et al.  Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals , 2019, Communications Physics.

[106]  Yan-Feng Chen,et al.  Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals , 2019, Nature Communications.

[107]  F. Song,et al.  Non-Hermitian Topological Invariants in Real Space. , 2019, Physical review letters.

[108]  Feng Li,et al.  Nodal rings and drumhead surface states in phononic crystals , 2019, Nature Communications.

[109]  F. Nori,et al.  Parity–time symmetry and exceptional points in photonics , 2019, Nature Materials.

[110]  Z. Q. Zhang,et al.  Pseudospin-1 Physics of Photonic Crystals , 2019, Research.

[111]  Guancong Ma,et al.  Topological phases in acoustic and mechanical systems , 2019, Nature Reviews Physics.

[112]  Zhengyou Liu,et al.  Probing Weyl Physics with One-Dimensional Sonic Crystals. , 2019, Physical review letters.

[113]  Hui Liu,et al.  Experimental Realization of Type-II Weyl Points and Fermi Arcs in Phononic Crystal. , 2019, Physical review letters.

[114]  Jie Zhu,et al.  One-Way Localized Adiabatic Passage in an Acoustic System. , 2019, Physical review letters.

[115]  Y. Chong,et al.  Realization of an Acoustic Third-Order Topological Insulator. , 2019, Physical review letters.

[116]  S. Murakami,et al.  Non-Bloch Band Theory of Non-Hermitian Systems. , 2019, Physical review letters.

[117]  G. Guo,et al.  Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology , 2019, New Journal of Physics.

[118]  Qiuquan Guo,et al.  Miniaturization of Floquet topological insulators for airborne acoustics by thermal control , 2019, Applied Physics Letters.

[119]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[120]  Masahito Ueda,et al.  Symmetry and Topology in Non-Hermitian Physics , 2018, Physical Review X.

[121]  G. Cho,et al.  Many-body order parameters for multipoles in solids , 2018, Physical Review B.

[122]  T. Hughes,et al.  Many-body electric multipole operators in extended systems , 2018, Physical Review B.

[123]  Yan-Feng Chen,et al.  Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. , 2018, Physical review letters.

[124]  Y. Chong,et al.  Topological triply degenerate point with double Fermi arcs , 2018, Nature Physics.

[125]  E. Bergholtz,et al.  Knotted non-Hermitian metals , 2018, Physical Review B.

[126]  Jiangbin Gong,et al.  Hybrid Higher-Order Skin-Topological Modes in Nonreciprocal Systems. , 2018, Physical review letters.

[127]  W. Benalcazar,et al.  Quantization of fractional corner charge in Cn -symmetric higher-order topological crystalline insulators , 2018, Physical Review B.

[128]  Kevin P. Chen,et al.  Experimental realization of a Weyl exceptional ring , 2018, Nature Photonics.

[129]  Zhengyou Liu,et al.  Acoustic Landau quantization and quantum-Hall-like edge states , 2018, Nature Physics.

[130]  Jiangping Hu,et al.  Non-Hermitian Hopf-link exceptional line semimetals , 2018, Physical Review B.

[131]  B. Liang,et al.  Experimental Demonstration of Acoustic Chern Insulators. , 2018, Physical review letters.

[132]  Andrea Alù,et al.  Observation of higher-order topological acoustic states protected by generalized chiral symmetry , 2018, Nature Materials.

[133]  Cheng He,et al.  Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states , 2018, Nature Communications.

[134]  Feng Li,et al.  On-chip valley topological materials for elastic wave manipulation , 2018, Nature Materials.

[135]  Ying Wu,et al.  Acoustic metasurfaces , 2018, Nature Reviews Materials.

[136]  Xiao-ping Liu,et al.  Elastic pseudospin transport for integratable topological phononic circuits , 2018, Nature Communications.

[137]  Liping Ye,et al.  Topological negative refraction of surface acoustic waves in a Weyl phononic crystal , 2018, Nature.

[138]  J. Christensen,et al.  Directional Acoustic Antennas Based on Valley‐Hall Topological Insulators , 2018, Advanced materials.

[139]  J. Christensen,et al.  Topological sound , 2018, Communications Physics.

[140]  Liang Feng,et al.  Non-Hermitian photonics promises exceptional topology of light , 2018, Nature Communications.

[141]  Chiara Daraio,et al.  Experimental realization of on-chip topological nanoelectromechanical metamaterials , 2018, Nature.

[142]  Yan-Feng Chen,et al.  Observation of second-order topological insulators in sonic crystals , 2018, 1806.10028.

[143]  Y. Chong,et al.  Acoustic higher-order topological insulator on a kagome lattice , 2018, Nature Materials.

[144]  Thomas C. Hull,et al.  Topological kinematics of origami metamaterials , 2018 .

[145]  Biye Xie,et al.  Second-order photonic topological insulator with corner states , 2018, Physical Review B.

[146]  M. Ruzzene,et al.  Band transition and topological interface modes in 1D elastic phononic crystals , 2018, Scientific Reports.

[147]  M. Bandres,et al.  Complex Edge-State Phase Transitions in 1D Topological Laser Arrays , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[148]  T. Lubensky,et al.  Maxwell Lattices and Topological Mechanics , 2018 .

[149]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[150]  Samit Kumar Gupta,et al.  Experimental Observation of Acoustic Weyl Points and Topological Surface States , 2018, Physical Review Applied.

[151]  Yuanjiang Xiang,et al.  Ideal Weyl points and helicoid surface states in artificial photonic crystal structures , 2018, Science.

[152]  Ş. Özdemir Fermi arcs connect topological degeneracies , 2018, Science.

[153]  N. Fang,et al.  Breaking the barriers: advances in acoustic functional materials , 2018 .

[154]  Yugui Peng,et al.  Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems , 2018 .

[155]  Feng Li,et al.  Valley Topological Phases in Bilayer Sonic Crystals. , 2018, Physical review letters.

[156]  A. Lemaître,et al.  Topological nanophononic states by band inversion , 2018, 1802.08870.

[157]  M. Vergniory,et al.  Higher-Order Topology in Bismuth , 2018, Nature Physics.

[158]  Demetrios N. Christodoulides,et al.  Non-Hermitian physics and PT symmetry , 2018, Nature Physics.

[159]  F. Semperlotti,et al.  Design and experimental observation of valley-Hall edge states in diatomic-graphene-like elastic waveguides , 2017, 1712.10271.

[160]  B. Morvan,et al.  Experimental Observation of Topologically Protected Helical Edge Modes in Patterned Elastic Plates , 2017, Physical Review X.

[161]  Gaurav Bahl,et al.  A quantized microwave quadrupole insulator with topologically protected corner states , 2017, Nature.

[162]  R. Fleury,et al.  Zero refractive index in time-Floquet acoustic metamaterials , 2017, 1709.08887.

[163]  M. Ezawa Higher-Order Topological Insulators and Semimetals on the Breathing Kagome and Pyrochlore Lattices. , 2017, Physical review letters.

[164]  A. Vishwanath,et al.  Fragile Topology and Wannier Obstructions. , 2017, Physical review letters.

[165]  M. Soljačić,et al.  Observation of bulk Fermi arc and polarization half charge from paired exceptional points , 2017, Science.

[166]  Han Zhao,et al.  Topological hybrid silicon microlasers , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[167]  Jinkyu Yang,et al.  Subwavelength and directional control of flexural waves in zone-folding induced topological plates , 2017, 1708.07994.

[168]  Luis Guillermo Villanueva,et al.  Observation of a phononic quadrupole topological insulator , 2017, Nature.

[169]  Leyou Zhang,et al.  Topological Edge Floppy Modes in Disordered Fiber Networks. , 2017, Physical review letters.

[170]  M. Vergniory,et al.  Higher-order topological insulators , 2017, Science Advances.

[171]  Liang Fu,et al.  Topological Band Theory for Non-Hermitian Hamiltonians. , 2017, Physical review letters.

[172]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[173]  C. Chan,et al.  Topological transport of sound mediated by spin-redirection geometric phase , 2016, Science Advances.

[174]  J. Christensen,et al.  Experimental verification of acoustic pseudospin multipoles in a symmetry-broken snowflakelike topological insulator , 2017 .

[175]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .

[176]  Luis E. F. Foa Torres,et al.  Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points , 2017, 1711.05235.

[177]  Abdelkrim El Amili,et al.  Nonreciprocal lasing in topological cavities of arbitrary geometries , 2017, Science.

[178]  Feng Li,et al.  Weyl points and Fermi arcs in a chiral phononic crystal , 2017, Nature Physics.

[179]  B. Bernevig,et al.  Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators , 2017, 1708.04230.

[180]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[181]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[182]  Z. Fang,et al.  (d-2)-Dimensional Edge States of Rotation Symmetry Protected Topological States. , 2017, Physical review letters.

[183]  Fabio Semperlotti,et al.  Tunable Acoustic Valley-Hall Edge States in Reconfigurable Phononic Elastic Waveguides , 2017, 1708.02987.

[184]  Ping Sheng,et al.  Sound Absorption Structures: From Porous Media to Acoustic Metamaterials , 2017 .

[185]  T. Ochiai Gapless surface states originating from accidentally degenerate quadratic band touching in a three-dimensional tetragonal photonic crystal , 2017, 1705.11006.

[186]  Y. Xiong Why does bulk boundary correspondence fail in some non-hermitian topological models , 2017, 1705.06039.

[187]  Massimo Ruzzene,et al.  Observation of topological valley modes in an elastic hexagonal lattice , 2017, 1705.08247.

[188]  Xue-Feng Zhu,et al.  Low-loss and broadband anomalous Floquet topological insulator for airborne sound , 2017 .

[189]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[190]  M Segev,et al.  Topologically protected bound states in photonic parity-time-symmetric crystals. , 2017, Nature materials.

[191]  Y. Wang,et al.  Observation of acoustic Dirac-like cone and double zero refractive index , 2017, Nature Communications.

[192]  Q. Wei,et al.  Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network , 2017 .

[193]  P. Kevrekidis,et al.  Demonstrating an In Situ Topological Band Transition in Cylindrical Granular Chains. , 2017, Physical review letters.

[194]  D. Sounas,et al.  Static non-reciprocity in mechanical metamaterials , 2017, Nature.

[195]  O. Painter,et al.  Snowflake Topological Insulator for Sound Waves , 2017, 1701.06330.

[196]  Wladimir A. Benalcazar,et al.  Quantized electric multipole insulators , 2016, Science.

[197]  M. Silveirinha P·T·Dsymmetry-protected scattering anomaly in optics , 2016, 1610.00688.

[198]  Xiaoming Mao,et al.  Transformable topological mechanical metamaterials , 2015, Nature Communications.

[199]  N. Mitchell,et al.  Amorphous topological insulators constructed from random point sets , 2016, Nature Physics.

[200]  Jiuyang Lu,et al.  Observation of topological valley transport of sound in sonic crystals , 2016, Nature Physics.

[201]  M. Ruzzene,et al.  Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect , 2016, 1611.08919.

[202]  Xue-Feng Zhu,et al.  Experimental demonstration of anomalous Floquet topological insulator for sound , 2016, Nature Communications.

[203]  C. Kane,et al.  Mechanical graphene , 2016, 1610.05787.

[204]  C. Kane,et al.  Topological Phonons and Weyl Lines in Three Dimensions. , 2016, Physical review letters.

[205]  Xiao-ping Liu,et al.  Photonic topological insulator with broken time-reversal symmetry , 2016, Proceedings of the National Academy of Sciences.

[206]  C. Bender PT symmetry in quantum physics: From a mathematical curiosity to optical experiments , 2016 .

[207]  Manzhu Ke,et al.  Valley vortex states in sonic crystals , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[208]  Vincenzo Vitelli,et al.  Geared topological metamaterials with tunable mechanical stability , 2016, 1602.08769.

[209]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[210]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[211]  Baile Zhang,et al.  Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains. , 2016, Physical review letters.

[212]  D. Sussman,et al.  Topological boundary modes in jammed matter. , 2015, Soft matter.

[213]  Xu Ni,et al.  Acoustic topological insulator and robust one-way sound transport , 2015, Nature Physics.

[214]  Andrea Alù,et al.  Floquet topological insulators for sound , 2015, Nature Communications.

[215]  T. Lubensky,et al.  Mechanical Weyl Modes in Topological Maxwell Lattices. , 2015, Physical review letters.

[216]  I. Cohen,et al.  Topological Mechanics of Origami and Kirigami. , 2015, Physical review letters.

[217]  Xu Ni,et al.  Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow , 2015, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[218]  R. Fleury,et al.  Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice , 2015, Nature Communications.

[219]  Pi-Gang Luan,et al.  Coriolis force induced topological order for classical mechanical vibrations , 2015 .

[220]  Stefan Nolte,et al.  Observation of a Topological Transition in the Bulk of a Non-Hermitian System. , 2015, Physical review letters.

[221]  Z. Wang,et al.  Topologically protected elastic waves in phononic metamaterials , 2015, Nature Communications.

[222]  Liang Fu,et al.  Topological nodal line semimetals with and without spin-orbital coupling , 2015, 1506.03449.

[223]  Xiao Hu,et al.  Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. , 2015, Physical review letters.

[224]  Y. Hatsugai,et al.  Manipulation of Dirac Cones in Mechanical Graphene , 2015, Scientific Reports.

[225]  Li-Yang Zheng,et al.  Acoustic phase-reconstruction near the Dirac point of a triangular phononic crystal , 2015 .

[226]  D. Kleckner,et al.  Topological mechanics of gyroscopic metamaterials , 2015, Proceedings of the National Academy of Sciences.

[227]  K. Bertoldi,et al.  Topological Phononic Crystals with One-Way Elastic Edge Waves. , 2015, Physical review letters.

[228]  S. Huber,et al.  Observation of phononic helical edge states in a mechanical topological insulator , 2015, Science.

[229]  Z. Q. Zhang,et al.  Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems , 2015, 1503.06295.

[230]  Z. Q. Zhang,et al.  Geometric phase and band inversion in periodic acoustic systems , 2015, Nature Physics.

[231]  Ulrich Kuhl,et al.  Selective enhancement of topologically induced interface states in a dielectric resonator chain , 2014, Nature Communications.

[232]  B. Chen,et al.  Topological modes bound to dislocations in mechanical metamaterials , 2014, Nature Physics.

[233]  F. Marquardt,et al.  Topological Phases of Sound and Light , 2014, 1409.5375.

[234]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[235]  Ying Wu,et al.  Double Dirac cones in phononic crystals , 2014 .

[236]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[237]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[238]  Vincenzo Vitelli,et al.  Nonlinear conduction via solitons in a topological mechanical insulator , 2014, Proceedings of the National Academy of Sciences.

[239]  Xu Ni,et al.  Accidental degeneracy of double Dirac cones in a phononic crystal , 2014, Scientific Reports.

[240]  R. Fleury,et al.  Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator , 2014, Science.

[241]  Y. Chong,et al.  Network models of photonic Floquet topological insulators , 2013, 1311.4789.

[242]  M. Segev,et al.  Observation of unconventional edge states in 'photonic graphene'. , 2012, Nature materials.

[243]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[244]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[245]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[246]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[247]  S. Shen Topological Insulators: Dirac Equation in Condensed Matters , 2013 .

[248]  Henning Schomerus,et al.  Topologically protected midgap states in complex photonic lattices. , 2013, Optics letters.

[249]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[250]  C. Kane,et al.  Surface state magnetization and chiral edge states on topological insulators. , 2012, Physical review letters.

[251]  Michael Levin,et al.  Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems , 2012, 1212.3324.

[252]  K. Sakoda Double Dirac cones in triangular-lattice metamaterials. , 2012, Optics express.

[253]  Yan Sun,et al.  Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb) , 2012, 1202.5636.

[254]  C. T. Chan,et al.  Do Linear Dispersions of Classical Waves Mean Dirac Cones? , 2012, 1202.1430.

[255]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[256]  E. Altman,et al.  Topological insulators in magnetic fields: quantum Hall effect and edge channels with a nonquantized θ term. , 2011, Physical review letters.

[257]  Zohar Ringel,et al.  Topological States and adiabatic pumping in quasicrystals. , 2011, Physical review letters.

[258]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[259]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[260]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[261]  Yan Pennec,et al.  Two-dimensional phononic crystals: Examples and applications , 2010 .

[262]  Huanyang Chen,et al.  Acoustic cloaking and transformation acoustics , 2010 .

[263]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[264]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[265]  Ming-Hui Lu,et al.  Phononic crystals and acoustic metamaterials , 2009 .

[266]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[267]  Zhengyou Liu,et al.  Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals. , 2008, Physical review letters.

[268]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[269]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[270]  J. Zi,et al.  Negative birefraction of acoustic waves in a sonic crystal. , 2007, Nature materials.

[271]  C. Beenakker,et al.  Valley filter and valley valve in graphene , 2006, cond-mat/0608533.

[272]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[273]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[274]  Jensen Li,et al.  Double-negative acoustic metamaterial. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[275]  M. Berry Physics of Nonhermitian Degeneracies , 2004 .

[276]  C. Bender,et al.  Complex extension of quantum mechanics. , 2002, Physical review letters.

[277]  R. Tateo,et al.  Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .

[278]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[279]  R. Martínez-Sala,et al.  SOUND ATTENUATION BY A TWO-DIMENSIONAL ARRAY OF RIGID CYLINDERS , 1998 .

[280]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[281]  N. Hatano,et al.  Vortex pinning and non-Hermitian quantum mechanics , 1997, cond-mat/9705290.

[282]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[283]  R. Martínez-Sala,et al.  Sound attenuation by sculpture , 1995, Nature.

[284]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[285]  Y. Hatsugai,et al.  Chern number and edge states in the integer quantum Hall effect. , 1993, Physical review letters.

[286]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[287]  Eleftherios N. Economou,et al.  Band structure of elastic waves in two dimensional systems , 1993 .

[288]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[289]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[290]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[291]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[292]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[293]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[294]  D. Thouless,et al.  Quantization of particle transport , 1983 .

[295]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[296]  C. Calladine Buckminster Fuller's “Tensegrity” structures and Clerk Maxwell's rules for the construction of stiff frames , 1978 .

[297]  E. Schrödinger Über die Kräftefreie bewegung in der relativistischen Quantenmechanik , 1930 .

[298]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .