Exergoeconomic optimization and sensitivity analysis of a commercial parabolic trough collector for the climate of Tehran, Iran

[1]  Ricardo Vasquez Padilla,et al.  Exergy analysis of parabolic trough solar receiver , 2014 .

[2]  M. Abid,et al.  Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts , 2016 .

[3]  M. Mehrpooya,et al.  Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids , 2018 .

[4]  R. J. Kuo,et al.  A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem – A case study on supply chain model , 2011 .

[5]  A. Allouhi,et al.  Energy and exergy analyses of a parabolic trough collector operated with nanofluids for medium and high temperature applications , 2018 .

[6]  Soteris A. Kalogirou,et al.  Exergy analysis on solar thermal systems: A better understanding of their sustainability , 2016 .

[7]  A. Hepbasli,et al.  Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system , 2013 .

[8]  A. Tripathy,et al.  Performance analysis of receiver of parabolic trough solar collector: Effect of selective coating, vacuum and semitransparent glass cover , 2018, International Journal of Energy Research.

[9]  Hassen T. Dorrah,et al.  Optimal sizing of solar water heating system based on genetic algorithm for aquaculture system , 2010, 2010 International Conference on Chemistry and Chemical Engineering.

[10]  Evangelos Bellos,et al.  A detailed exergetic analysis of parabolic trough collectors , 2017 .

[11]  A. Kasaeian,et al.  Geometric optimization of parabolic trough solar collector based on the local concentration ratio using the Monte Carlo method , 2018, Energy Conversion and Management.

[12]  Ming-Jia Li,et al.  Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux , 2017 .

[13]  Ebrahim Afshari,et al.  Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector , 2016 .

[14]  Evangelos Bellos,et al.  The use of parabolic trough collectors for solar cooling – A case study for Athens climate , 2016 .

[15]  L. Salgado Conrado,et al.  Thermal performance of parabolic trough solar collectors , 2017 .

[16]  Aliakbar Akbarzadeh,et al.  Hybrid optimization algorithm for thermal analysis in a solar parabolic trough collector based on nanofluid , 2015 .

[17]  M. Bidi,et al.  Exergy analysis of a hybrid solar‐fossil fuel power plant , 2019, Energy Science & Engineering.

[18]  Mehdi Mehrpooya,et al.  Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector , 2015 .

[19]  A. Hassanzadeh,et al.  Energy and exergy analysis of parabolic trough collectors , 2018 .

[20]  V. Dudley,et al.  Test results, Industrial Solar Technology parabolic trough solar collector , 1995 .

[21]  B. Ghobadian,et al.  Estimation of mean monthly and hourly global solar radiation on surfaces tracking the sun: Case study: Tehran , 2012, 2012 Second Iranian Conference on Renewable Energy and Distributed Generation.

[22]  Surendra Singh Kachhwaha,et al.  Thermo-economic analysis of solar-biomass organic Rankine cycle powered cascaded vapor compression-absorption system , 2017 .

[23]  K. A. Antonopoulos,et al.  A detailed working fluid investigation for solar parabolic trough collectors , 2017 .

[24]  Hongguang Jin,et al.  Thermodynamic evaluation of a distributed energy system integrating a solar thermochemical process with a double-axis tracking parabolic trough collector , 2018, Applied Thermal Engineering.

[25]  K. A. Antonopoulos,et al.  Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube , 2016 .

[26]  Fassahat Ullah Qureshi,et al.  Energetic and economic performance analyses of photovoltaic, parabolic trough collector and wind energy systems for Multan, Pakistan , 2015 .

[27]  Simon Furbo,et al.  Thermo-economic optimization of a hybrid solar district heating plant with flat plate collectors and parabolic trough collectors in series , 2018, Energy Conversion and Management.

[28]  A. Kahrobaian,et al.  Exergy Optimization Applied to Linear Parabolic Solar Collectors , 2008 .

[29]  O. Behar,et al.  An improved model for predicting the performance of parabolic trough solar collectors , 2018, International Journal of Energy Research.

[30]  Jinliang Xu,et al.  Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid , 2016 .

[31]  S. Kalogirou A detailed thermal model of a parabolic trough collector receiver , 2012 .

[32]  Ali Akbar Ranjbar,et al.  Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector , 2017 .

[33]  V. Zare,et al.  Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: Energy, exergy and economic analyses , 2017 .

[34]  Manuel Berenguel,et al.  Parabolic trough collector field dynamic model: Validation, energetic and exergetic analyses , 2019, Applied Thermal Engineering.

[35]  Alejandro Manzano-Ramírez,et al.  Exergetic and Thermoeconomic Analyses of Solar Air Heating Processes Using a Parabolic Trough Collector , 2014, Entropy.

[36]  Richard Bannerot,et al.  Derivation of Universal Error Parameters for Comprehensive Optical Analysis of Parabolic Troughs , 1986 .

[37]  I. Dincer,et al.  Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle , 2018 .

[38]  Santanu Bandyopadhyay,et al.  Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle , 2016 .

[39]  Eduardo Zarza,et al.  Parabolic-trough solar collectors and their applications , 2010 .

[40]  Y. E. Yuksel Thermodynamic assessment of modified Organic Rankine Cycle integrated with parabolic trough collector for hydrogen production , 2017 .