An analysis of error reconciliation protocols used in Quantum Key Distribution systems
暂无分享,去创建一个
Gerald Baumgartner | Michael R. Grimaila | James S Johnson | Jeffrey W. Humphries | G. Baumgartner | J. Humphries | M. Grimaila | James S Johnson
[1] D.J.C. MacKay,et al. Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.
[2] Michael R. Grimaila,et al. An empirical analysis of the cascade error reconciliation protocol for quantum key distribution , 2011, CSIIRW '11.
[3] Daniel A. Spielman,et al. Practical loss-resilient codes , 1997, STOC '97.
[4] Hsie-Chia Chang,et al. Structured LDPC codes with low error floor based on PEG tanner graphs , 2008, 2008 IEEE International Symposium on Circuits and Systems.
[5] Stephen Wiesner,et al. Conjugate coding , 1983, SIGA.
[6] H. Chau,et al. Efficient Quantum Key Distribution , 1998, quant-ph/9803007.
[7] Richard W. Hamming,et al. Error detecting and error correcting codes , 1950 .
[8] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[9] James S Johnson,et al. An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution , 2012 .
[10] Daniel A. Spielman,et al. Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.
[11] David J. C. MacKay,et al. Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.
[12] Michael R. Grimaila,et al. Quantum Key Distribution: A Revolutionary Security Technology Quantum Key Distribution , 2012 .
[13] Gilles Brassard,et al. Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..
[14] Evangelos Eleftheriou,et al. Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).
[15] Wade Trappe,et al. Introduction to Cryptography with Coding Theory , 2002 .
[16] Robert Michael Tanner,et al. A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.
[17] G. Richter,et al. An Improvement of the PEG Algorithm for LDPC Codes in the Waterfall Region , 2005, EUROCON 2005 - The International Conference on "Computer as a Tool".
[18] Wade Trappe,et al. Introduction to Cryptography with Coding Theory (2nd Edition) , 2005 .
[19] David Elkouss,et al. Efficient reconciliation protocol for discrete-variable quantum key distribution , 2009, 2009 IEEE International Symposium on Information Theory.
[20] Stefan Rass,et al. Adaptive Error Correction with Dynamic Initial Block Size in Quantum Cryptographic Key Distribution Protocols , 2009, 2009 Third International Conference on Quantum, Nano and Micro Technologies.
[21] Minh-Dung Dang,et al. BB84 Implementation and Computer Reality , 2009, 2009 IEEE-RIVF International Conference on Computing and Communication Technologies.
[22] Gilles Brassard,et al. Experimental Quantum Cryptography , 1990, EUROCRYPT.
[23] David Elkouss,et al. Rate compatible protocol for information reconciliation: An application to QKD , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).
[24] C. G. Peterson,et al. Fast, efficient error reconciliation for quantum cryptography , 2002, quant-ph/0203096.
[25] T. Sugimoto,et al. A Study on Secret key Reconciliation Protocol "Cascade" , 2000 .
[26] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[27] Kenta Kasai,et al. Information reconciliation for QKD with rate-compatible non-binary LDPC codes , 2010, 2010 International Symposium On Information Theory & Its Applications.
[28] Kevin C. Lustic. Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol , 2012 .
[29] Gilles Brassard,et al. 25 years of quantum cryptography , 1996, SIGA.
[30] Magne Gudmundsen,et al. Improved Secret Key Rate in Quantum Key Distribution using highly irregular Low-Density Parity-Check codes , 2010 .
[31] Ajay Dholakia,et al. Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.
[32] Gilles Brassard,et al. Secret-Key Reconciliation by Public Discussion , 1994, EUROCRYPT.
[33] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .