Redox Flow Battery for Energy Storage

[1]  M. Ulaganathan,et al.  Electrochemical behaviour of titanium/iridium(IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery , 2013 .

[2]  Charles W. Monroe,et al.  Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery , 2012 .

[3]  C. Ponce de León,et al.  An undivided zinc–cerium redox flow battery operating at room temperature (295 K) , 2011 .

[4]  Matthias Wessling,et al.  A polyelectrolyte membrane-based vanadium/air redox flow battery , 2011 .

[5]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[6]  M. H. Chakrabarti,et al.  Ruthenium based redox flow battery for solar energy storage , 2011 .

[7]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[8]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[9]  M. H. Chakrabarti,et al.  All-Chromium Redox Flow Battery for Renewable Energy Storage , 2011 .

[10]  Zhihong Liu,et al.  Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery , 2011 .

[11]  S. Hajimolana Progress in Flow Battery Research a Review , 2011 .

[12]  M. H. Chakrabarti,et al.  Charge–Discharge Performance of a Novel Undivided Redox Flow Battery for Renewable Energy Storage , 2010 .

[13]  Frank C. Walsh,et al.  Modelling the effects of oxygen evolution in the all-vanadium redox flow battery , 2010 .

[14]  Gareth Kear,et al.  A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm × 10 cm flow cell , 2010 .

[15]  Maria Skyllas-Kazacos,et al.  Recent advances with UNSW vanadium‐based redox flow batteries , 2010 .

[16]  Maria Skyllas-Kazacos,et al.  Electro-chemical energy storage technologies for wind energy systems , 2010 .

[17]  Frank C. Walsh,et al.  Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery , 2010 .

[18]  Gaoping Cao,et al.  A study of tiron in aqueous solutions for redox flow battery application , 2010 .

[19]  Frank C. Walsh,et al.  Non-isothermal modelling of the all-vanadium redox flow battery , 2009 .

[20]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[21]  Frank C. Walsh,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode , 2009 .

[22]  Gaoping Cao,et al.  Study on a single flow acid Cd–chloranil battery , 2009 .

[23]  M. Soroush,et al.  Dynamics and Control of a Tubular Solid-Oxide Fuel Cell , 2009 .

[24]  Edward P.L. Roberts,et al.  Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: Evaluation of a utility-scale system , 2009 .

[25]  Edward P.L. Roberts,et al.  Numerical modelling of a bromide-polysulphide redox flow battery. Part 1: Modelling approach and validation for a pilot scale system , 2009 .

[26]  F. Walsh,et al.  SECONDARY BATTERIES – FLOW SYSTEMS | Overview , 2009 .

[27]  Xindong Wang,et al.  Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery , 2008 .

[28]  F C Walsh,et al.  The use of electrolyte redox potential to monitor the Ce(IV)/Ce(III) couple. , 2008, Journal of environmental management.

[29]  Yusheng Yang,et al.  Bifunctional redox flow battery: 2. V(III)/V(II)–l-cystine(O2) system , 2008 .

[30]  Gareth Kear,et al.  A novel flow battery — a lead-acid battery based on an electrolyte with soluble lead(II): part VI. Studies of the lead dioxide positive electrode , 2008 .

[31]  Analysis of Mixtures of Ferrocyanide and Ferricyanideusing UV-Visible Spectroscopy for Characterization of aNovel Redox Flow Battery , 2008 .

[32]  Yusheng Yang,et al.  Bifunctional redox flow battery-1 V(III)/V(II)–glyoxal(O2) system , 2008 .

[33]  Liquan Chen,et al.  Research progress of vanadium redox flow battery for energy storage in China , 2008 .

[34]  Chulheung Bae,et al.  A membrane free electrochemical cell using porous flow-through graphite felt electrodes , 2008 .

[35]  Li Zhang,et al.  Preliminary study of single flow zinc-nickel battery , 2007 .

[36]  Frank C. Walsh,et al.  Characterization of the reaction environment in a filter-press redox flow reactor , 2007 .

[37]  Xinping Qiu,et al.  Nafion/SiO2 hybrid membrane for vanadium redox flow battery , 2007 .

[38]  Organic Electrolytes for Redox Flow Batteries , 2007 .

[39]  M. H. Chakrabarti,et al.  Evaluation of electrolytes for redox flow battery applications , 2007 .

[40]  Liquan Chen,et al.  Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application , 2007 .

[41]  Huamin Zhang,et al.  Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack , 2006 .

[42]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[43]  T. Yamamura,et al.  Electrodeposition of uranium in dimethyl sulfoxide and its inhibition by acetylacetone as studied by EQCM , 2006 .

[44]  T. Yamamura,et al.  Electrochemical and spectroscopic investigations of uranium(III) with N,N,N′,N′-tetramethylmalonamide in DMF , 2006 .

[45]  Yusheng Yang,et al.  A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application , 2006 .

[46]  T. Yamamura,et al.  Electrolytic preparation, redox titration and stability of pentavalent state of uranyl tetraketonate in dimethyl sulfoxide , 2006 .

[47]  Tomoo Yamamura,et al.  Energy efficiency of neptunium redox battery in comparison with vanadium battery , 2006 .

[48]  Huamin Zhang,et al.  Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes , 2005 .

[49]  Derek Pletcher,et al.  A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives , 2005 .

[50]  Derek Pletcher,et al.  A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II). III. The influence of conditions on battery performance , 2005 .

[51]  B. R. Williams,et al.  Energy oasis [vanadium redox battery system in power distribution application] , 2005 .

[52]  Tomoo Yamamura,et al.  Estimation of energy efficiency in neptunium redox flow batteries by the standard rate constants , 2005 .

[53]  T. Yamamura,et al.  Characterization of tetraketone ligands for active materials of all-uranium redox flow battery , 2004 .

[54]  Maria Skyllas-Kazacos,et al.  Kinetics of the Chemical Dissolution of Vanadium Pentoxide in Acidic Bromide Solutions , 2004 .

[55]  R. Wills,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) , 2004 .

[56]  Derek Pletcher,et al.  A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part II. Flow cell studies , 2004 .

[57]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[58]  Nobuyuki Tokuda,et al.  Development of a Redox Flow Battery , 2003 .

[59]  Bruno Scrosati,et al.  Modern batteries : an introduction to electrochemical power sources , 2003 .

[60]  Chulheung Bae,et al.  Chromium redox couples for application to redox flow batteries , 2002 .

[61]  Hajimu Yamana,et al.  Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery , 2002 .

[62]  T. Yamamura,et al.  Electrochemical investigation of tetravalent uranium β-diketones for active materials of all-uranium redox flow battery , 2002 .

[63]  S. Iwasa,et al.  A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application , 2002 .

[64]  A. M. Wolsky The status and prospects for flywheels and SMES that incorporate HTS , 2002 .

[65]  Y. Katayama,et al.  Redox reaction in 1-ethyl-3-methylimidazolium–iron chlorides molten salt system for battery application , 2002 .

[66]  Stephen E. Creager,et al.  Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions , 2002 .

[67]  Yang Liu,et al.  Studies of the Feasibility of a Ce4 + / Ce3 + ­ V 2 + / V 3 + Redox Cell , 2002 .

[68]  Ch. Fabjan,et al.  The vanadium redox-battery: an efficient storage unit for photovoltaic systems , 2001 .

[69]  F. Walsh,et al.  Electrochemical technology for environmental treatment and clean energy conversion , 2001 .

[70]  H. Yamana,et al.  An Application of Actinide Elements for a Redox Flow Battery , 2000 .

[71]  C. Rydh Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage , 1999 .

[72]  J. N. Baker,et al.  Electrical energy storage at the turn of the Millennium , 1999 .

[73]  Akira Shibata,et al.  Development of vanadium redox flow battery for electricity storage , 1999 .

[74]  B. Jonshagen,et al.  The zinc/bromine battery system for utility and remote area applications , 1999 .

[75]  A. Price,et al.  A novel approach to utility scale energy storage [regenerative fuel cells] , 1999 .

[76]  Maria Skyllas-Kazacos,et al.  Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery , 1999 .

[77]  E. S. Cassedy,et al.  Introduction to energy: Resources, technology, and Society. 2nd edition , 1998 .

[78]  R. Dell Batteries for Electric Vehicles , 1997 .

[79]  M. Skyllas-Kazacos,et al.  The vanadium redox battery for emergency back-up applications , 1997, Proceedings of Power and Energy Systems in Converging Markets.

[80]  I. Tsuda,et al.  Improvement of performance in redox flow batteries for PV systems , 1997 .

[81]  S. Licht,et al.  Disproportionation of Aqueous Sulfur and Sulfide: Kinetics of Polysulfide Decomposition , 1997 .

[82]  Antonio Aldaz,et al.  Development of a 0.1 kW power accumulation pilot plant based on an Fe/Cr redox flow battery Part I. Considerations on flow-distribution design , 1994 .

[83]  C. Menictas,et al.  Evaluation of an NH4VO3-derived electrolyte for the vanadium-redox flow battery , 1993 .

[84]  Antonio Aldaz,et al.  Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis , 1992 .

[85]  Antonio Aldaz,et al.  Optimization studies on a Fe/Cr redox flow battery , 1992 .

[86]  Maria Skyllas-Kazacos,et al.  Characteristics and performance of 1 kW UNSW vanadium redox battery , 1991 .

[87]  M. Bartolozzi Development of redox flow batteries. A historical bibliography , 1989 .

[88]  A. Murthy,et al.  Fe(III)/Fe(II): ligand systems for use as negative half-cells in redox-flow cells , 1989 .

[89]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[90]  Susumu Okazaki,et al.  Performance testing of 10 kW-class advanced batteries for electric energy storage systems in Japan , 1988 .

[91]  Maria Skyllas-Kazacos,et al.  Characteristics of a new all-vanadium redox flow battery , 1988 .

[92]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[93]  Maria Skyllas-Kazacos,et al.  Evaluation of electrode materials for vanadium redox cell , 1987 .

[94]  M. Bartolozzi,et al.  Determination of the kinetic parameters for the Ti(III)/Ti(IV) couple using a rotating disk electrode , 1986 .

[95]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[96]  S. Takahashi,et al.  Overview of rechargeable battery testing in Japan , 1986 .

[97]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[98]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[99]  M. A. Reid,et al.  Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half‐Cell in the Iron‐Chromium Redox Energy Storage System , 1985 .

[100]  N. H. Hagedorn,et al.  Cycling Performance of the Iron-Chromium Redox Energy Storage System , 1985 .

[101]  Chi-Chao Wan,et al.  A study of the discharge performance of the Ti/Fe redox flow system , 1984 .

[102]  Peter S. Fedkiw,et al.  A mathematical model for the iron/chromium redox battery , 1984 .

[103]  Pritam Singh,et al.  Application of non-aqueous solvents to batteries part I. Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc—bromine , 1983 .

[104]  R. T. Galasco,et al.  Operating Performance of an Fe‐Ti Stationary Redox Battery in the Presence of Lead , 1982 .

[105]  D. W. Miller,et al.  Flowing-electrolyte-battery testing and evaluation , 1982 .

[106]  Djong-Gie Oei,et al.  A chemically regenerative redox fuel cell. II , 1982 .

[107]  R. T. Galasco,et al.  Enhancing Performance of the Ti(III)/Ti(IV) Couple for Redox Battery Applications , 1981 .

[108]  A. Bard,et al.  Solution Redox Couples for Electrochemical Energy Storage I . Iron (III)‐Iron (II) Complexes with O‐Phenanthroline and Related Ligands , 1981 .

[109]  L. W. Hruska,et al.  Investigation of Factors Affecting Performance of the Iron‐Redox Battery , 1981 .

[110]  J. Giner,et al.  Advanced screening of electrode couples , 1980 .

[111]  L. H. Thaller,et al.  Redox flow cell energy storage systems , 1979 .

[112]  R. T. Galasco,et al.  Discharge Characteristics of a Soluble Iron‐Titanium Battery System , 1979 .

[113]  M. Warshay,et al.  Cost and Size Estimates for a Redox Bulk Energy Storage Concept , 1977 .

[114]  L. H. Thaller,et al.  Electrically rechargeable REDOX flow cell , 1976 .

[115]  J. Giner,et al.  Screening of redox couples and electrode materials , 1976 .

[116]  T. Saji,et al.  Electron-transfer kinetics of transition-metal complexes in lower oxidation states , 1975 .