SASA: Super-Resolution and Ambiguity-Free Sparse Array Geometry Optimization With Aperture Size Constraints for MIMO Radar

To improve the performance of multiple-input–multiple-output (MIMO) radar, various sparse arrays have been used. However, the angular resolution of existing nonuniform arrays optimized by either combinatorial algorithms or heuristic ones is limited by the Rayleigh criterion, which is strictly related to the aperture size. Based on the angular ambiguity function (AAF) analysis, two new models are established in this work for directly optimizing the sidelobe level (SLL) or the main lobe width (MLW) with the constraints of aperture size and element spacing. The aforementioned designs result in non-convex and nonlinear optimization problems, and solutions are derived via the alternating direction multiplier method (ADMM). Furthermore, considering a parametric tradeoff between SLL and MLW, a hybrid algorithm is proposed to search for the SLL-MLW Pareto front boundary. Finally, simulations are provided to demonstrate the high angular resolution and ambiguity-free properties of the optimized sparse arrays.

[1]  M. Migliore,et al.  Isophoric Inflating Deflating Exploration Algorithm (I-IDEA) for Equal-Amplitude Aperiodic Arrays , 2022, IEEE Transactions on Antennas and Propagation.

[2]  Xiaoyuan He,et al.  Optimal MIMO Sparse Array Design Based on Simulated Annealing Particle Swarm Optimization , 2022, 2022 16th European Conference on Antennas and Propagation (EuCAP).

[3]  A. B. Smolders,et al.  Sparse virtual array synthesis for MIMO radar imaging systems , 2021, IET Microwaves, Antennas & Propagation.

[4]  Xiaobo Deng,et al.  Optimal transmitter and receiver placement for localizing 2D interested-region target with constrained sensor regions , 2021, Signal Process..

[5]  Junli Liang,et al.  A unified sparse array design framework for beampattern synthesis , 2021, Signal Process..

[6]  Shunqiao Sun,et al.  MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges , 2020, IEEE Signal Processing Magazine.

[7]  Christian Waldschmidt,et al.  Calibration and Direction-of-Arrival Estimation of Millimeter-Wave Radars: A Practical Introduction , 2020, IEEE Antennas and Propagation Magazine.

[8]  Christian Waldschmidt,et al.  2-D MIMO Radar: A Method for Array Performance Assessment and Design of a Planar Antenna Array , 2020, IEEE Transactions on Antennas and Propagation.

[9]  Hing Cheung So,et al.  Array Beampattern Synthesis Without Specifying Lobe Level Masks , 2020, IEEE Transactions on Antennas and Propagation.

[10]  María A. González-Huici,et al.  Sparse array design for Automotive MIMO Radar , 2019, 2019 16th European Radar Conference (EuRAD).

[11]  Upamanyu Madhow,et al.  Design of Large Effective Apertures for Millimeter Wave Systems Using a Sparse Array of Subarrays , 2019, IEEE Transactions on Signal Processing.

[12]  Christian Waldschmidt,et al.  High-Resolution 160-GHz Imaging MIMO Radar Using MMICs With On-Chip Frequency Synthesizers , 2019, IEEE Transactions on Microwave Theory and Techniques.

[13]  Olivier Romain,et al.  Radar Signal Processing for Sensing in Assisted Living: The challenges associated with real-time implementation of emerging algorithms , 2019, IEEE Signal Processing Magazine.

[14]  Changzhi Li,et al.  A Portable $K$ -Band 3-D MIMO Radar With Nonuniformly Spaced Array for Short-Range Localization , 2018, IEEE Transactions on Microwave Theory and Techniques.

[15]  María A. González-Huici,et al.  Constrained optimal design of automotive radar arrays using the Weiss-Weinstein Bound , 2018, 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[16]  Deyun Zhou,et al.  Sparse Array Beampattern Synthesis via Alternating Direction Method of Multipliers , 2018, IEEE Transactions on Antennas and Propagation.

[17]  Christian Waldschmidt,et al.  Optimization of a MIMO radar antenna system for automotive applications , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[18]  U. Rafique,et al.  Optimization of linear antenna array for low SLL and high directivity , 2016, 2016 19th International Multi-Topic Conference (INMIC).

[19]  Paolo Rocca,et al.  Unconventional Phased Array Architectures and Design Methodologies—A Review , 2016, Proceedings of the IEEE.

[20]  G. K. Mahanti,et al.  Synthesis of linear array antenna for fixed level of side lobe level and first null beam width using particle swarm optimization , 2013, 2013 International Conference on Communication and Signal Processing.

[21]  Xiaoming Yuan,et al.  A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..

[22]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[23]  P. Vainikainen,et al.  Ambiguity analysis of isolation - based multi-antenna structures on mobile terminal , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[24]  Bin Yang,et al.  Antenna geometry optimization for 2D direction-of-arrival estimation for radar imaging , 2011, 2011 International ITG Workshop on Smart Antennas.

[25]  Jian Li,et al.  Sparse Antenna Array Design for MIMO Active Sensing Applications , 2011, IEEE Transactions on Antennas and Propagation.

[26]  Bin Yang,et al.  Array geometry optimization for direction-of-arrival estimation including subarrays and tapering , 2010, 2010 International ITG Workshop on Smart Antennas (WSA).

[27]  Randy L. Haupt,et al.  Antenna Arrays: A Computational Approach , 2010 .

[28]  Jian Li,et al.  Iterative Adaptive Approaches to MIMO Radar Imaging , 2010, IEEE Journal of Selected Topics in Signal Processing.

[29]  Reinhard Feger,et al.  Design of a linear non-uniform antenna array for a 77-GHz MIMO FMCW radar , 2009, 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID.

[30]  A. Stelzer,et al.  A 77-GHz FMCW MIMO Radar Based on an SiGe Single-Chip Transceiver , 2009, IEEE Transactions on Microwave Theory and Techniques.

[31]  Zhaoshui He,et al.  A modified real GA for the sparse linear array synthesis with multiple constraints , 2006 .

[32]  C. Engdahl,et al.  Element position considerations for robust direction finding using sparse arrays , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[33]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[34]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[35]  C. Waldschmidt,et al.  Automotive Radar — From First Efforts to Future Systems , 2021, IEEE Journal of Microwaves.

[36]  Marianna V. Ivashina,et al.  Sparse Automotive MIMO Radar for Super-Resolution Single Snapshot DOA Estimation With Mutual Coupling , 2021, IEEE Access.

[37]  Christian Waldschmidt,et al.  Assessment of a Millimeter-Wave Antenna System for MIMO Radar Applications , 2017, IEEE Antennas and Wireless Propagation Letters.

[38]  J. Arora Multi-objective Optimum Design Concepts and Methods , 2012 .

[39]  M. Obradovic,et al.  Ambiguity characterization of arbitrary antenna array: type I ambiguity , 1998, 1988 IEEE 5th International Symposium on Spread Spectrum Techniques and Applications - Proceedings. Spread Technology to Africa (Cat. No.98TH8333).

[40]  P. Hall,et al.  Handbook of microstrip antennas , 1989 .

[41]  R. Ross Beamwidth of Phased Arrays , 1972 .

[42]  T. Minimum-Redundancy Linear Arrays , 2022 .