Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data

Abstract With the upcoming BIOMASS mission, P-band PolInSAR is expected to provide new perspectives on global forest aboveground biomass (AGB). However, its performance has not yet been fully evaluated for dense tropical forests with complex structure and very high biomass. Based on the TropiSAR campaign in French Guiana, we explored the challenges of the three most commonly used PolInSAR measures to capture AGB in tropical forests; coherence magnitude, interferometric phase, and backscatter. An improved AGB estimation approach was developed by integrating multiple information derived from single-baseline PolInSAR data. The approach involves ground-volume backscatter decomposition and combines volume backscatter with the retrieved forest height. Volume backscatter from the forest canopy was the best predictor of AGB for tropical forests, whereas the ground backscatter contribution was affected by the complex underlying surface and terrain slope. Both LiDAR- and PolInSAR-derived forest heights showed limited correlation with high AGB due to the varying forest basal area. The linear combination of PolInSAR-derived forest height and volume backscatter complemented each other and produced improved AGB estimates. Comparing three different PolInSAR data pairs, the proposed method produced an AGB map with an average R2 of 0.7 and RMSE of 34 tons/ha (relative RMSE of 9.4%) at a spatial resolution of 125 × 125 m2 for biomass between 250–500 tons/ha.

[1]  R. Treuhaft,et al.  Vertical structure of vegetated land surfaces from interferometric and polarimetric radar , 2000 .

[2]  Irena Hajnsek,et al.  MULTIBASELINE POLARIMETRIC SAR INTERFEROMETRY FOREST HEIGHT INVERSION APPROACHES , 2011 .

[3]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[4]  Grégoire Vincent,et al.  Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure , 2012 .

[5]  Malcolm Davidson,et al.  The TropiSAR Airborne Campaign in French Guiana: Objectives, Description, and Observed Temporal Behavior of the Backscatter Signal , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[7]  R. Houghton,et al.  Tropical forests are a net carbon source based on aboveground measurements of gain and loss , 2017, Science.

[8]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[9]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[10]  Yi Y. Liu,et al.  Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers , 2013 .

[11]  Patrick Johnson,et al.  Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests , 2011, Annals of Forest Science.

[12]  S. Cloude,et al.  Three-stage inversion process for polarimetric SAR interferometry , 2003 .

[13]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[14]  Thuy Le Toan,et al.  Decrease of L-band SAR backscatter with biomass of dense forests , 2015 .

[15]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[16]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[17]  Yasser Maghsoudi,et al.  An Improved Three-Stage Inversion Algorithm in Forest Height Estimation Using Single-Baseline Polarimetric SAR Interferometry Data , 2018, IEEE Geoscience and Remote Sensing Letters.

[18]  Lars M. H. Ulander,et al.  Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model , 2017 .

[19]  Maxim Neumann,et al.  Assessing Performance of L- and P-Band Polarimetric Interferometric SAR Data in Estimating Boreal Forest Above-Ground Biomass , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  S. R. Cloude,et al.  The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[22]  F. Rocca,et al.  SAR tomography for the retrieval of forest biomass and height: cross-validation at two tropical forest sites in French Guiana , 2016 .

[23]  J. Nichol,et al.  Improved forest biomass estimates using ALOS AVNIR-2 texture indices , 2011 .

[24]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[25]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[26]  Y. Yamagata,et al.  The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia , 2013 .

[27]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[28]  Lars M. H. Ulander,et al.  Radiometric slope correction of synthetic-aperture radar images , 1996, IEEE Trans. Geosci. Remote. Sens..

[29]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[30]  Lars M. H. Ulander,et al.  Topographic correction for biomass retrieval from P-band SAR data in boreal forests , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[31]  Wade T. Crow,et al.  Performance Metrics for Soil Moisture Retrievals and Application Requirements , 2009 .

[32]  Irena Hajnsek,et al.  Biomass estimation from polarimetric SAR interferometry over heterogeneous forest terrain , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[33]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Irena Hajnsek,et al.  Height Estimation of Boreal Forest: Interferometric Model-Based Inversion at L- and X-Band Versus HUTSCAT Profiling Scatterometer , 2007, IEEE Geoscience and Remote Sensing Letters.

[35]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[36]  B. He,et al.  The impacts of spatial baseline on forest canopy height model and digital terrain model retrieval using P-band PolInSAR data , 2018 .

[37]  Irena Hajnsek,et al.  Quantifying Temporal Decorrelation over Boreal Forest at L- and P-band , 2008 .

[38]  M. Moghaddam,et al.  Vegetation characteristics and underlying topography from interferometric radar , 1996 .

[39]  D. Bonal,et al.  Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana , 2006, Journal of Tropical Ecology.

[40]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[41]  Irena Hajnsek,et al.  Quantification of Temporal Decorrelation Effects at L-Band for Polarimetric SAR Interferometry Applications , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[42]  Irena Hajnsek,et al.  Applying a common allometric equation to convert forest height from Pol-InSAR data to forest biomass , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[43]  Stefano Tebaldini,et al.  Algebraic Synthesis of Forest Scenarios From Multibaseline PolInSAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Josef Kellndorfer,et al.  Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: A regional‐scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets , 2010 .

[45]  Sébastien Angélliaume,et al.  The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Marco Lavalle,et al.  Three-Baseline InSAR Estimation of Forest Height , 2014, IEEE Geoscience and Remote Sensing Letters.

[47]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[48]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[49]  S. Solberg,et al.  Monitoring spruce volume and biomass with InSAR data from TanDEM-X , 2013 .

[50]  G. Asner,et al.  An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR , 2018 .

[51]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[52]  Gerhard Krieger,et al.  Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts , 2005, EURASIP J. Adv. Signal Process..

[53]  Baharin Bin Ahmad,et al.  Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation , 2012 .

[54]  Alex C. Lee,et al.  Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia , 2006 .

[55]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[56]  Thomas Flynn,et al.  Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[57]  Shane Cloude,et al.  Robust parameter estimation using dual baseline polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[58]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[59]  Lars M. H. Ulander,et al.  Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[60]  Irena Hajnsek,et al.  Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Jakob J. van Zyl,et al.  The effect of topography on radar scattering from vegetated areas , 1992, IEEE Trans. Geosci. Remote. Sens..

[62]  Terje Gobakken,et al.  Biomass and InSAR height relationship in a dense tropical forest , 2017 .

[63]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[64]  Marco Lavalle,et al.  A Temporal Decorrelation Model for Polarimetric Radar Interferometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[65]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[66]  Jennifer L. Dungan,et al.  Forest variable estimation from fusion of SAR and multispectral optical data , 2002, IEEE Trans. Geosci. Remote. Sens..

[67]  Thuy Le Toan,et al.  Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[68]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[69]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[70]  Konstantinos Papathanassiou,et al.  Frequency Effects in Pol-InSAR Forest Height Estimation , 2006 .

[71]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[72]  Marco Lavalle,et al.  Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[73]  S. R. Cloude,et al.  A coherent EM scattering model for dual baseline POLInSAR , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[74]  Zheng Bao,et al.  S-RVoG model for forest parameters inversion over underlying topography , 2013 .

[75]  Christiane Schmullius,et al.  Growing stock volume estimation from L-band ALOS PALSAR polarimetric coherence in Siberian forest , 2014 .

[76]  Christiane Schmullius,et al.  The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing stock volume estimation in Central Siberia , 2014 .

[77]  Thuy Le Toan,et al.  Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: $\gamma^0$ or $t^0$? , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[78]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[79]  Martin Brandt,et al.  Mapping gains and losses in woody vegetation across global tropical drylands , 2017, Global change biology.

[80]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[81]  Sylvie Gourlet-Fleury,et al.  Ecology and management of a neotropical rainforest : lessons drawn from Paracou, a long-term experimental research site in French Guiana , 2004 .

[82]  Romeo Tatsambon Fomena,et al.  On The Role of Coherence Optimization in Polarimetric SAR Interferometry , 2005 .

[83]  Marc Simard,et al.  An Assessment of Temporal Decorrelation Compensation Methods for Forest Canopy Height Estimation Using Airborne L-Band Same-Day Repeat-Pass Polarimetric SAR Interferometry , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[84]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.