EasyXplorer: A Flexible Visual Exploration Approach for Multivariate Spatial Data

Exploring multivariate spatial data attracts much attention in the visualization community. The main challenge lies in that automatic analysis techniques is insufficient in discovering complicated patterns with the perspective of human beings, while visualization techniques are incapable of accurately identifying the features of interest. This paper addresses this contradiction by enhancing automatic analysis techniques with human intelligence in an iterative visual exploration process. The integrated system, called EasyXplorer, provides a suite of intuitive clustering, dimension reduction, visual encoding and filtering widgets within 2D and 3D views, allowing an inexperienced user to visually explore and reason undiscovered features with several simple interactions. Case studies show the quality and scalability of our approach in quite challenging examples.

[1]  Xin Zhao,et al.  Multi-dimensional Reduction and Transfer Function Design using Parallel Coordinates , 2010, VG@Eurographics.

[2]  Helmut Doleisch,et al.  SimVis: Interactive visual analysis of large and time-dependent 3D simulation data , 2007, 2007 Winter Simulation Conference.

[3]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[4]  Cláudio T. Silva,et al.  Interactive Vector Field Feature Identification , 2010, IEEE Transactions on Visualization and Computer Graphics.

[5]  Xiaoru Yuan,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Scalable Multivariate Volume Visualization and Analysis Based on Dimension Projection and Parallel Coordinates , 2022 .

[6]  William Ribarsky,et al.  Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[7]  Bernice E. Rogowitz,et al.  WEAVE: a system for visually linking 3-D and statistical visualizations, applied to cardiac simulation and measurement data , 2000 .

[8]  Kwan-Liu Ma,et al.  Interactive feature extraction and tracking by utilizing region coherency , 2009, 2009 IEEE Pacific Visualization Symposium.

[9]  Marcin Novotni,et al.  3D zernike descriptors for content based shape retrieval , 2003, SM '03.

[10]  Xin Zhao,et al.  Modified Dendrogram of Attribute Space for Multidimensional Transfer Function Design , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  Bernice E. Rogowitz,et al.  WEAVE: a system for visually linking 3-D and statistical visualizations applied to cardiac simulation and measurement data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[12]  Eugene Zhang,et al.  Rotational symmetry field design on surfaces , 2007, ACM Trans. Graph..

[13]  David S. Ebert,et al.  Abstracting Attribute Space for Transfer Function Exploration and Design , 2013, IEEE Transactions on Visualization and Computer Graphics.

[14]  Anders Ynnerman,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2006) the Α-histogram: Using Spatial Coherence to Enhance Histograms and Transfer Function Design , 2022 .

[15]  Robert S. Laramee,et al.  The State of the Art in Flow Visualisation: Feature Extraction and Tracking , 2003, Comput. Graph. Forum.

[16]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[17]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[18]  Frank Nielsen,et al.  Statistical region merging , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Marc Stamminger,et al.  Spatialized Transfer Functions , 2005, EuroVis.

[20]  Eugene Zhang,et al.  Interactive Visualization of Rotational Symmetry Fields on Surfaces , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  Hujun Bao,et al.  Image-Space Texture-Based Output-Coherent Surface Flow Visualization. , 2013, IEEE transactions on visualization and computer graphics.

[22]  Ulrik Brandes,et al.  Interactive Level-of-Detail Rendering of Large Graphs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  Raphael Fuchs,et al.  Visual Human+Machine Learning , 2009, IEEE Transactions on Visualization and Computer Graphics.

[24]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[25]  Kevin T. McDonnell,et al.  An interactive visual analytics framework for multi-field data in a geo-spatial context , 2013 .

[26]  Robert S. Laramee,et al.  The State of the Art in Flow Visualization: Dense and Texture‐Based Techniques , 2004, Comput. Graph. Forum.

[27]  Maryann E. Martone,et al.  Dimensionality Reduction on Multi-Dimensional Transfer Functions for Multi-Channel Volume Data Sets , 2010, Inf. Vis..

[28]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Luis Gustavo Nonato,et al.  Local Affine Multidimensional Projection , 2011, IEEE Transactions on Visualization and Computer Graphics.

[30]  Timo Ropinski,et al.  Taxonomy and Usage Guidelines for Glyph-based Medical Visualization , 2008, SimVis.

[31]  Gerik Scheuermann,et al.  Brushing of Attribute Clouds for the Visualization of Multivariate Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[32]  Markus Stommel,et al.  Visualization and Analysis of Second‐Order Tensors: Moving Beyond the Symmetric Positive‐Definite Case , 2013, Comput. Graph. Forum.

[33]  Amitava Datta,et al.  A parallel coordinates style interface for exploratory volume visualization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[34]  Stefan Bruckner,et al.  Volume visualization based on statistical transfer-function spaces , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).