Differential methods in inverse scattering

This paper discusses a new set of differential methods for solving the inverse scattering problem associated to the propagation of waves in an inhomogeneous medium. By writing the medium equations in the form of a two-component system describing the interaction of rightward and leftward propagating waves, the causality of the propagation phenomena is exploited in order to identify the medium layer by layer. The recursive procedure that we obtain constitutes a continuous version of an algorithm first derived by Schur in order to test for the boundedness of functions analytic inside the unit circle. It recovers the local reflectivity function of the medium. Using similar ideas, some other differential methods can also be derived to reconstruct alternative parametrizations of the layered medium in terms of the local impedance or of the potential function.The differential inverse scattering methods turn out to be very efficient since, in some sense, they let the medium perform the inversion by itself and thus...

[1]  J. R. Resnick,et al.  The inverse problem for the vocal tract: numerical methods, acoustical experiments, and speech synthesis. , 1983, The Journal of the Acoustical Society of America.

[2]  P. Dewilde,et al.  Inverse Scattering and Linear Prediction, the Time Continuous Case , 1981 .

[3]  O. Koefoed,et al.  The Application of the Kernel Function in Interpreting - Geoelectrical Resistivity Measurements , 1968 .

[4]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[5]  W. W. Symes The Inverse Reflection Problem for a Smoothly Stratified Elastic Medium. , 1979 .

[6]  Kenneth P. Bube,et al.  The One-Dimensional Inverse Problem of Reflection Seismology , 1983 .

[7]  B. Gopinath,et al.  Determination of the shape of the human vocal tract from acoustical measurements , 1970, Bell Syst. Tech. J..

[8]  L. Ljung,et al.  Generalized Krein-Levinson Equations for Efficient Calculation of Fredholm Resolvents of Non-Displacement Kernels , 1978 .

[9]  T.H. Crystal,et al.  Linear prediction of speech , 1977, Proceedings of the IEEE.

[10]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[11]  Inverse scattering for a layered acoustic medium using the first‐order equations of motion , 1983 .

[12]  B. Seckler,et al.  The Inverse Problem in the Quantum Theory of Scattering... , 1964 .

[13]  M. Jaulent The inverse scattering problem for LCRG transmission lines , 1982 .

[14]  Roger G. Newton,et al.  Inversion of reflection data for layered media: a review of exact methods , 1981 .

[15]  Robert Burridge,et al.  The Gelfand-Levitan, the Marchenko, and the Gopinath-Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems , 1980 .

[16]  E. Robinson,et al.  Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms , 1982, Proceedings of the IEEE.

[17]  John E. Markel,et al.  Linear Prediction of Speech , 1976, Communication and Cybernetics.

[18]  H. Landau The Inverse Problem for the Vocal Tract and the Moment Problem , 1983 .

[19]  E.D. Denman,et al.  An introduction to invariant imbedding , 1977, Proceedings of the IEEE.

[20]  James G. Berryman,et al.  Discrete inverse methods for elastic waves in layered media , 1980 .

[21]  Robert Carroll,et al.  Scattering techniques for a one dimensional inverse problem in geophysics , 1981 .

[22]  V. Belevitch,et al.  Classical network theory , 1968 .

[23]  M. R. Wohlers Lumped and distributed passive networks , 1969 .

[24]  Alfred M. Bruckstein,et al.  Inverse scattering with noisy data , 1986 .

[25]  G. Lamb Elements of soliton theory , 1980 .

[26]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[27]  F. Potra,et al.  A new algorithm for detecting reflection coefficients in layered media , 1983 .

[28]  M. M. Sondhi,et al.  Inversion of the telegraph equation and the synthesis of nonuniform lines , 1971 .

[29]  E. A. Robinson Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms , 1982 .

[30]  E. A. Robinson,et al.  DYNAMIC PREDICTIVE DECONVOLUTION , 1975 .

[31]  INVERSION OF ACOUSTICAL IMPEDANCE PROFILE BY THE METHODS OF CHARACTERISTICS. , 1982 .

[32]  T. Kailath,et al.  On a generalized Szegö- Levinson realization algorithm for optimal linear predictors based on a network synthesis approach , 1978 .

[33]  R. Redheffer On the Relation of Transmission-Line Theory to Scattering and Transfer† , 1962 .

[34]  Bernard C. Levy,et al.  The Schur algorithm and its applications , 1985 .

[35]  A. Nilsen,et al.  AN ATTEMPT AT THE INVERSION OF REFLECTION DATA , 1976 .

[36]  Jerry A. Ware,et al.  Continuous and Discrete Inverse‐Scattering Problems in a Stratified Elastic Medium. I. Plane Waves at Normal Incidence , 1969 .

[37]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[38]  Irvin W. Kay,et al.  Inverse scattering papers, 1955-1962 , 1982 .

[39]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[40]  L. Delves,et al.  Numerical solution of integral equations , 1975 .

[41]  V. Bardan COMMENTS ON „DYNAMIC PREDICTIVE DECONVOLUTION” , 1977 .

[42]  B. Anderson,et al.  Fast algorithms for the integral equations of the inverse scattering problem , 1978 .

[43]  C. Pekeris Direct method of interpretation in resistivity prospecting , 1940 .

[44]  Tariq S. Durrani,et al.  Geophysical signal processing , 1986 .

[45]  Lennart Ljung,et al.  The Factorization and Representation of Operators in the Algebra Generated by Toeplitz Operators , 1979 .

[46]  V. A. Marchenko,et al.  The Inverse Problem of Scattering Theory , 1963 .

[47]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[48]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .