Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

[1]  E. Serabyn,et al.  EXTREME ADAPTIVE OPTICS IMAGING WITH A CLEAR AND WELL-CORRECTED OFF-AXIS TELESCOPE SUBAPERTURE , 2007, astro-ph/0702592.

[2]  Lewis C. Roberts,et al.  Measurements of Mesospheric Sodium Abundance above the Hawaiian Islands , 2007 .

[3]  J. Angel,et al.  Ground-based imaging of extrasolar planets using adaptive optics , 1994, Nature.

[4]  P. Wizinowich,et al.  W. M. Keck Observatory's next-generation adaptive optics facility , 2008, Astronomical Telescopes + Instrumentation.

[5]  S. Rabien,et al.  Short timescale variability of the mesospheric sodium layer , 2000 .

[6]  Liping Zhao,et al.  Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor. , 2006, Applied optics.

[7]  James Roger P. Angel,et al.  Manufacture and use of a Shack-Hartmann sensor with a multifaceted prism for simultaneous sensing of multiple wavefronts , 2004, SPIE Astronomical Telescopes + Instrumentation.

[8]  D.J. Dagel,et al.  Large-stroke MEMS deformable mirrors for adaptive optics , 2006, Journal of Microelectromechanical Systems.

[9]  Pascal Puget,et al.  NAOS visible wavefront sensor , 2000, Astronomical Telescopes and Instrumentation.

[10]  Brian J. Bauman,et al.  Concept for the Keck Next Generation Adaptive Optics system , 2008, Astronomical Telescopes + Instrumentation.

[11]  Claire E. Max,et al.  W. M. Keck Observatory's next-generation adaptive optics facility , 2010, Astronomical Telescopes + Instrumentation.

[12]  Richard Dekany Exoearth study with TMT , 2004, Extremely Large Telescopes.

[13]  C. Mackay,et al.  Photon counting strategies with low-light-level CCDs , 2003, astro-ph/0307305.

[14]  D. Wick,et al.  A High Speed Reflective Wave Front Sensor Using a Novel MEM Device , 2007, 2007 IEEE Aerospace Conference.

[15]  Richard Dekany,et al.  PALM-3000: visible light AO on the 5.1-meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[16]  Brian Jeffrey Bauman Optical design for extremely large telescope adaptive optics systems , 2003 .

[17]  C. Boyer,et al.  A conceptual design for the Thirty Meter Telescope adaptive optics systems , 2006, SPIE Astronomical Telescopes + Instrumentation.

[18]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[19]  Jungtae Rha,et al.  Reconfigurable Shack-Hartmann wavefront sensor , 2004 .

[20]  Michael Lloyd-Hart,et al.  Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures. , 2005, Optics letters.

[21]  Christoph Baranec,et al.  High-order wavefront sensing system for PALM-3000 , 2008, Astronomical Telescopes + Instrumentation.

[22]  Philip M. Hinz,et al.  Whack-a-speckle: focal plane wavefront sensing in theory and practice with a deformable secondary mirror and 5-micron camera , 2006, SPIE Astronomical Telescopes + Instrumentation.

[23]  Gerard Rousset,et al.  Status of the VLT Nasmyth adaptive optics system (NAOS) , 2000, Astronomical Telescopes and Instrumentation.