A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models

Abstract In typical surface energy balance (SEB) models such as surface energy balance for land (SEBAL) and mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC), calibration of sensible heat flux (H) requires identification of endmember (i.e. hot and cold) pixels. Such pixel selection is typically done manually, which makes it labor intensive to apply SEBAL or METRIC over large spatial areas or long time series. In this paper, we introduce a new automated approach that uses an exhaustive search algorithm (ESA) to identify endmember pixels for use in these models. The fully automated models were applied on 134 near cloud-free Landsat images with each image covering one of four flux measurement sites covering a distinct land cover type in humid Florida or relatively drier Oklahoma. Observed land surface temperatures (Ts) at automatically identified hot and cold pixels were within 0.25% of manually identified pixels (both coefficient of determination, R2, and Nash-Sutcliffe efficiency, NSE, ≥ 0.98, and root mean squared error, RMSE, ≤ 1.31 K). The new fully automated model performed better and demonstrated better consistency than an existing semi-automated method that used a statistical approach to subset coldest and hottest pixels within an image. Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.94 and RMSE ≤ 0.35 mm day− 1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed automated pixel selection approach greatly reduces time demands (e.g. approximately one image per hour vs. hundreds of image per hour) for applying SEBAL and METRIC and allows for their more widespread and frequent use. This automation can also reduce potential bias introduced by an inexperienced operator and extends the domain of the models to new users.

[1]  B. Scanlon,et al.  Estimating Groundwater Recharge , 2010 .

[2]  V. Singh,et al.  A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery , 2012 .

[3]  Yan Zhang,et al.  A general predictive model for estimating monthly ecosystem evapotranspiration , 2011 .

[4]  Cuizhen Wang,et al.  Spatial patterns of land surface phenology relative to monthly climate variations: US Great Plains , 2014 .

[5]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[6]  Albert Olioso,et al.  Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain) , 2009 .

[7]  Wilfried Brutsaert,et al.  Aspects of bulk atmospheric boundary layer similarity under free‐convective conditions , 1999 .

[8]  W. Brutsaert On a derivable formula for long-wave radiation from clear skies , 1975 .

[9]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[10]  Gautam Bisht,et al.  Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study , 2010 .

[11]  J. Jacobs,et al.  Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration , 2005 .

[12]  Hongbo Su,et al.  An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation , 2015 .

[13]  Martha C. Anderson,et al.  A comparison of operational remote sensing-based models for estimating crop evapotranspiration , 2009 .

[14]  Terry A. Howell,et al.  Surface Energy Balance Based Evapotranspiration Mapping in the Texas High Plains , 2008, Sensors.

[15]  I. A. Walter,et al.  The ASCE standardized reference evapotranspiration equation , 2005 .

[16]  Miquel Ninyerola,et al.  Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  William P. Kustas,et al.  An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes , 2007 .

[18]  Giorgos Mountrakis,et al.  Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina , 2012, Remote. Sens..

[19]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .

[20]  Luke J. Marzen,et al.  Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States , 2012 .

[21]  Soe W. Myint,et al.  Empirical modeling and spatio-temporal patterns of urban evapotranspiration for the Phoenix metropolitan area, Arizona , 2016 .

[22]  Lars Ribbe,et al.  Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study , 2016 .

[23]  Tae-Woong Kim,et al.  Evapotranspiration estimation using the Landsat-5 Thematic Mapper image over the Gyungan watershed in Korea , 2011 .

[24]  Giorgos Mountrakis,et al.  A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research , 2016 .

[25]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[26]  William P. Kustas,et al.  An intercomparison of three remote sensing-based surface energy balance algorithms over a corn and soybean production region (Iowa, U.S.) during SMACEX , 2009 .

[27]  Qihao Weng,et al.  A survey of image classification methods and techniques for improving classification performance , 2007 .

[28]  Chad J. Penn,et al.  Evaluating performance of short-rotation woody crops for bioremediation purposes , 2014, New Forests.

[29]  M. Hodgson,et al.  Characteristics of Search Spaces for Identifying Optimum Thresholds in Change Detection Studies , 2009 .

[30]  P. Droogers Estimating actual evapotranspiration using a detailed agro-hydrological model , 2000 .

[31]  Diofantos G. Hadjimitsis,et al.  A Modified SEBAL Modeling Approach for Estimating Crop Evapotranspiration in Semi-arid Conditions , 2013, Water Resources Management.

[32]  Jungho Im,et al.  Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[33]  R. Allen,et al.  At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance , 2008 .

[34]  Andrew M. O'Reilly,et al.  Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida , 2007 .

[35]  James L. Wright,et al.  Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. , 2005 .

[36]  Lindi J. Quackenbush,et al.  A simple Landsat–MODIS fusion approach for monitoring seasonal evapotranspiration at 30 m spatial resolution , 2015 .

[37]  Ayse Irmak,et al.  Satellite‐based ET estimation in agriculture using SEBAL and METRIC , 2011 .

[38]  Michael E. Hodgson,et al.  A Parameterization Model for Transportation Feature Extraction , 2004 .

[39]  J. Ardö,et al.  A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes , 2014 .

[40]  Kelly R. Thorp,et al.  Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models , 2015 .

[41]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[42]  Michael D. Dukes,et al.  Comparison of Evapotranspiration Rates for Flatwoods and Ridge Citrus , 2007 .

[43]  Eric F. Wood,et al.  A Global Intercomparison of Modeled and Observed Land–Atmosphere Coupling* , 2012 .

[44]  Michael E. Hodgson,et al.  Optimizing the binary discriminant function in change detection applications , 2008 .

[45]  Di Long,et al.  A modified surface energy balance algorithm for land (M‐SEBAL) based on a trapezoidal framework , 2012 .

[46]  M. Mccabe,et al.  Multi-site evaluation of terrestrial evaporation models using FLUXNET data , 2014 .

[47]  Di Long,et al.  Assessing the impact of end‐member selection on the accuracy of satellite‐based spatial variability models for actual evapotranspiration estimation , 2013 .

[48]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[49]  Bo-Hui Tang,et al.  An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation , 2010 .

[50]  Wout Verhoef,et al.  Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions , 2012 .

[51]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[52]  Chaolei Zheng,et al.  Coupling SEBAL with a new radiation module and MODIS products for better estimation of evapotranspiration , 2016 .

[53]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[54]  Richard G. Allen,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model , 2007 .

[55]  Yuei-An Liou,et al.  Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review , 2014 .

[56]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[57]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[58]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[59]  Anthony Vodacek,et al.  Tracking Land Use/Land Cover Dynamics in Cloud Prone Areas Using Moderate Resolution Satellite Data: A Case Study in Central Africa , 2015, Remote. Sens..

[60]  Luis S. Pereira,et al.  Evapotranspiration and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC models using ground and satellite observations , 2014 .

[61]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[62]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[63]  Richard G. Allen,et al.  Skin layer evaporation to account for small precipitation events—An enhancement to the FAO-56 evaporation model , 2011 .

[64]  Theodore G. Cleveland,et al.  Improved Time of Concentration Estimation on Overland Flow Surfaces Including Low-Sloped Planes , 2014 .

[65]  Ronglin Tang,et al.  Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data , 2013 .

[66]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[67]  Justin L. Huntington,et al.  Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC , 2013 .

[68]  W. Bastiaanssen Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates. , 1995 .

[69]  Lutz Breuer,et al.  Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging , 2014 .

[70]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[71]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[72]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[73]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[74]  W. J. Kramber,et al.  Automated Calibration of the METRIC‐Landsat Evapotranspiration Process , 2013 .

[75]  Michael E. Hodgson,et al.  An automated binary change detection model using a calibration approach , 2007 .

[76]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[77]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[78]  Martha C. Anderson,et al.  Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources , 2012 .

[79]  Eric F. Wood,et al.  Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches , 2011 .

[80]  David I. Stannard,et al.  Comparison of Penman‐Monteith, Shuttleworth‐Wallace, and Modified Priestley‐Taylor Evapotranspiration Models for wildland vegetation in semiarid rangeland , 1993 .

[81]  Wilfried Brutsaert,et al.  Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation , 1992 .

[82]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[83]  Zhao-Liang Li,et al.  How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? , 2011 .

[84]  J. Norman,et al.  Correcting eddy-covariance flux underestimates over a grassland , 2000 .

[85]  Massimo Menenti,et al.  S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance , 2000 .