ADAPTATION AND OPTIMIZATION OF PHOTOVOLTAIC SYSTEMS FOR COUNTRYSIDE HOUSE

Описан процесс разработки автономных энергетических систем фотоэлектрического типа в сочетании с аккумуляторной батареей, предназначенных для удовлетворения потребностей сельских домашних хозяйств в Бенине. Эти энергетические системы были проанализированы, смоделированы и оптимизированы. Критерии оценки получены из опроса, проведенного группой чиновников, занимающихся вопросами электрификации сельских районов. В опросе участвовали профессионалы, играющие важную роль в процессе принятия решений по электрификации и проектам в сельских районах; местные ассоциации, получившие выгоду в результате применения этих проектов в Бенине; техники и пользователи этих систем. Эти критерии являются приоритетными в соответствии с AMDEC. При проведении оптимизации был использован простой и эффективный метод оптимизации, основанный на моделировании компонентов и определении критериев для поддержки принятия решений. Ключевые слова: оптимизация, фотоэлектрические автономные системы децентрализованной электрификации сельских районов. The process of the development of the energy systems of the autonomous photovoltaic type, coupled with batteries of storage and intended for the cover of the needs of the rural homes in Benin is described. These appropriate energy systems were analyzed, modelled and optimized. The criteria of evaluation are obtained from the investigation made by a group of officials dealing with electrification of rural areas. The professionals, who play an important role in taking decisions on electrification and the projects in rural areas, local associations that benefit from the use of these projects in Benine, technicians and users of these systems took part in the investigation. These criteria are organized into a hierarchy according to the AMDEC method. During optimization the simple and effective method of optimization was used; it is based on modeling the components and setting criteria for taking decision support.

[1]  Ziyad M. Salameh,et al.  Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system , 1996 .

[2]  A. Louche,et al.  Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions , 2008 .

[3]  Weixiang Shen,et al.  Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia , 2009 .

[4]  Rachid Ibtiouen,et al.  Techno-economic valuation and optimization of integrated photovoltaic/wind energy conversion system , 2011 .

[5]  José L. Bernal-Agustín,et al.  Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV–wind–diesel systems with batteries storage , 2011 .

[6]  José L. Bernal-Agustín,et al.  Multi-objective design of PV–wind–diesel–hydrogen–battery systems , 2008 .

[7]  Yoon-Ho Kim,et al.  Design of interface circuits with electrical battery models , 1997, IEEE Trans. Ind. Electron..

[8]  Weerakorn Ongsakul,et al.  A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads , 2002 .

[9]  E. Alsema,et al.  Environmental Impact of Crystalline Silicon Photovoltaic Module Production , 2005 .

[10]  Bin Ai,et al.  Computer-aided design of PV/wind hybrid system , 2003 .

[11]  Heike Trautmann,et al.  Integration of Preferences in Hypervolume-Based Multiobjective Evolutionary Algorithms by Means of Desirability Functions , 2010, IEEE Transactions on Evolutionary Computation.

[12]  José L. Bernal-Agustín,et al.  Design of isolated hybrid systems minimizing costs and pollutant emissions , 2006 .

[13]  Sandip Deshmukh,et al.  Modeling of hybrid renewable energy systems , 2008 .

[14]  Xavier Pelet,et al.  Multiobjective optimisation of integrated energy systems for remote communities considering economics and CO2 emissions , 2005 .

[15]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[16]  Graham Ault,et al.  Multi-objective planning framework for stochastic and controllable distributed energy resources , 2009 .

[17]  Saifur Rahman,et al.  Unit sizing and control of hybrid wind-solar power systems , 1997 .

[18]  Daniel Weisser,et al.  A wind¿diesel system with hydrogen storage: Joint optimisation of design and dispatch , 2006 .

[19]  Wei Zhou,et al.  OPTIMAL SIZING METHOD FOR STAND-ALONE HYBRID SOLAR–WIND SYSTEM WITH LPSP TECHNOLOGY BY USING GENETIC ALGORITHM , 2008 .

[20]  Patrick Sebastian,et al.  Multi-objective optimization of the design of two-stage flash evaporators: Part 2. Multi-objective optimization , 2010 .

[21]  Jean Faucher Pratique de l'AMDEC : Assurez la qualité et la sûreté de fonctionnement de vos produits, équipements et procédés , 2009 .

[22]  Yaël Thiaux Optimisation des profils de consommation pour minimiser les coûts économique et énergétique sur cycle de vie des systèmes photovoltaïques autonomes et hybrides - Evaluation de la technologie Li-ion , 2010 .

[23]  M. J. Khan,et al.  Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland , 2005 .

[24]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[25]  A. Louche,et al.  Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica island , 2008 .

[26]  A. Parizad,et al.  Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices , 2009 .