Modeling the BOLD correlates of competitive neural dynamics

[1]  M. Jüptner,et al.  Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?—Implications for PET and fMRI , 1995, NeuroImage.

[2]  Irwin Oppenheim,et al.  Nonlinear response I: General considerations , 1974 .

[3]  H. Soltanian-Zadeh,et al.  Integrated MEG/fMRI Model Validated Using Real Auditory Data , 2008, Brain Topography.

[4]  Leslie G. Ungerleider,et al.  Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Wulfram Gerstner,et al.  Firing patterns in the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[6]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[7]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[8]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[9]  B. Horwitz,et al.  Functional brain imaging and modeling of brain disorders. , 1999, Progress in brain research.

[10]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[11]  Scott T. Grafton,et al.  Synthetic PET: Analyzing large‐scale properties of neural networks , 1994 .

[12]  Hamid Soltanian-Zadeh,et al.  Integrated MEG/EEG and fMRI model based on neural masses , 2006, IEEE Transactions on Biomedical Engineering.

[13]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[14]  Gustavo Deco,et al.  Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. , 2002, Cerebral cortex.

[15]  Naoki Miura,et al.  A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.

[16]  David Eidelberg,et al.  Dissociation of Metabolic and Neurovascular Responses to Levodopa in the Treatment of Parkinson's Disease , 2008, The Journal of Neuroscience.

[17]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  E. Rolls,et al.  What and Where in Visual Working Memory: A Computational Neurodynamical Perspective for Integrating fMRI and Single-Neuron Data , 2004, Journal of Cognitive Neuroscience.

[19]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Researchers , 2007 .

[20]  Roman R Poznanski,et al.  fMRI models of dendritic and astrocytic networks. , 2006, Journal of integrative neuroscience.

[21]  Péter Szigetvári,et al.  What and When? , 2019, Inauguration and Liturgical Kingship in the Long Twelfth Century.

[22]  R. Koehler,et al.  Role of astrocytes in cerebrovascular regulation. , 2006, Journal of applied physiology.

[23]  P. Goldman-Rakic,et al.  Dopaminergic regulation of cerebral cortical microcirculation , 1998, Nature Neuroscience.

[24]  Eric A Newman,et al.  Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling , 2006, The Journal of Neuroscience.

[25]  B. Horwitz,et al.  Predicting human functional maps with neural net modeling , 1999, Human brain mapping.

[26]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[27]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[28]  B. Horwitz,et al.  Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. , 1998, Cerebral cortex.

[29]  J. C. Jimenez,et al.  Nonlinear local electrovascular coupling. I: A theoretical model , 2006, Human brain mapping.

[30]  J. Rossier,et al.  Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways , 2004, The Journal of Neuroscience.

[31]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[32]  Michael A. Arbib,et al.  Synthetic brain imaging: grasping, mirror neurons and imitation , 2000, Neural Networks.

[33]  Michael A. Arbib,et al.  Modeling parietal-premotor interactions in primate control of grasping , 1998, Neural Networks.

[34]  Mark W. Greenlee,et al.  Neural correlates of stimulus-invariant decisions about motion in depth , 2010, NeuroImage.

[35]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[36]  Hansjörg Scherberger,et al.  Context-Specific Grasp Movement Representation in the Macaque Anterior Intraparietal Area , 2009, The Journal of Neuroscience.

[37]  Romain Brette,et al.  Neuroinformatics Original Research Article Brian: a Simulator for Spiking Neural Networks in Python , 2022 .

[38]  M. Shadlen,et al.  The effect of stimulus strength on the speed and accuracy of a perceptual decision. , 2005, Journal of vision.

[39]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[40]  R. Andersen,et al.  BOLD fMRI dynamics in monkeys reflects spatial decisions in free-choice and reward context tasks , 2009, Neuroscience Research.

[41]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[42]  P. Eveillard [When and where?]. , 2014, La Revue du praticien.

[43]  Nelson J. Trujillo-Barreto,et al.  Identification and comparison of stochastic metabolic/hemodynamic models (sMHM) for the generation of the BOLD signal , 2009, Journal of Computational Neuroscience.

[44]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[45]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[46]  P. Magistretti,et al.  A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism , 2007, Proceedings of the National Academy of Sciences.

[47]  G. Bonvento,et al.  SEROTONIN IN THE REGULATION OF BRAIN MICROCIRCULATION , 1996, Progress in Neurobiology.

[48]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[49]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[50]  Gustavo Deco,et al.  Feature-based Attention in Human Visual Cortex: Simulation of Fmri Data , 2003 .

[51]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[52]  Ying Zheng,et al.  A Model of the Hemodynamic Response and Oxygen Delivery to Brain , 2002, NeuroImage.

[53]  Kai-Hsiang Chuang,et al.  Ipsilateral cortical fMRI responses after peripheral nerve damage in rats reflect increased interneuron activity , 2009, Proceedings of the National Academy of Sciences.

[54]  H. Soltanian-Zadeh,et al.  Integrated MEG and fMRI Model: Synthesis and Analysis , 2005, Brain Topography.

[55]  Scott T. Grafton,et al.  Synthetic PET imaging for grasping: from primate Neurophysiology to human behavior , 2003 .