Asymptotically Fast Discrete Logarithms in Quadratic Number Fields

This article presents algorithms for computing discrete logarithms in class groups of quadratic number fields. In the case of imaginary quadratic fields, the algorithm is based on methods applied by Hafner and McCurley [HM89] to determine the structure of the class group of imaginary quadratic fields. In the case of real quadratic fields, the algorithm of Buchmann [Buc89] for computation of class group and regulator forms the basis. We employ the rigorous elliptic curve factorization algorithm of Pomerance [Pom87], and an algorithm for solving systems of linear Diophantine equations proposed and analysed by Mulders and Storjohann [MS99]. Under the assumption of the Generalized Riemann Hypothesis, we obtain for fields with discriminant d a rigorously proven time bound of \(L_{|d|} [\frac{1}{2}, \frac{3}{4}\sqrt{2}]\).

[1]  Richard Mollin,et al.  Number theory and applications , 1989 .

[2]  C. Pomerance Fast, Rigorous Factorization and Discrete Logarithm Algorithms , 1987 .

[3]  B. David Saunders,et al.  Certifying inconsistency of sparse linear systems , 1998, ISSAC '98.

[4]  Martin Seysen,et al.  A probabilistic factorization algorithm with quadratic forms of negative discriminant , 1987 .

[5]  Christine Abel,et al.  Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen , 1994 .

[6]  M. Maurer,et al.  Regulator approximation and fundamental unit computation for real-quadratic orders , 2000 .

[7]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[8]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[9]  Johannes A. Buchmann,et al.  On the Computation of Discrete Logarithms in Class Groups , 1990, CRYPTO.

[10]  Arne Storjohann,et al.  Diophantine linear system solving , 1999, ISSAC '99.

[11]  H. Lenstra,et al.  A rigorous time bound for factoring integers , 1992 .

[12]  Johannes Buchmann,et al.  Computing a reduced lattice basis from a generating system , 1992 .

[13]  K. McCurley,et al.  A rigorous subexponential algorithm for computation of class groups , 1989 .

[14]  J. Buchmann A subexponential algorithm for the determination of class groups and regulators of algebraic number fields , 1990 .

[15]  E. Bach Explicit bounds for primality testing and related problems , 1990 .