A REGION-BASED MODEL AND BINARY LEVEL SET FUNCTION APPLIED TOWELD DEFECTS DETECTION IN RADIOGRAPHIC IMAGES

In this paper, we propose a model for active contours to detect boundaries’ objects in given image. The curve evolution is based on Chan-Vese model implemented via binary variational level set formulation. The particularity of this model is the capacity to detect boundaries’ objects without need to use gradient of the image, this property gives its several advantages: it allows detecting both contours with or without gradient, it has ability to detect automatically interior contours, and it is robust in the presence of noise. For increasing the performance of model, we introduce the level sets function to describe the active contour, the more important advantage to use level set is the ability to change topology. Experiments on synthetic and real (weld radiographic) images show both efficiency and accuracy of implemented model.

[1]  J. March Introduction to the Calculus of Variations , 1999 .

[2]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[3]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[4]  B. S. Manjunath,et al.  Variational image segmentation using boundary functions , 1998, IEEE Trans. Image Process..

[5]  Baba C. Vemuri,et al.  Topology-independent shape modeling scheme , 1993, Optics & Photonics.

[6]  Ariane Herbulot,et al.  Mesures statistiques non-paramétriques pour la segmentation d'images et de vidéos et minimisation par contours actifs. (Non-parametric statistical methods for image and video segmentation and minimisation with active contours) , 2007 .

[7]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[9]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[10]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[11]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[12]  Tony F. Chan,et al.  An Active Contour Model without Edges , 1999, Scale-Space.

[13]  Irving H. Shames,et al.  Introduction to the Calculus of Variations , 2013 .

[14]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[15]  Baba C. Vemuri,et al.  Evolutionary Fronts for Topology-Independent Shape Modeling and Recoveery , 1994, ECCV.

[16]  Jianwei Yin,et al.  Jacquard image segmentation using Mumford-Shah model , 2006 .

[17]  Lei Zhang,et al.  Active contours with selective local or global segmentation: A new formulation and level set method , 2010, Image Vis. Comput..

[18]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[19]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[20]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[22]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.