Nematic Bogoliubov Fermi surfaces from magnetic toroidal order in FeSe$_{1-x}$S$_x$

Recently it has been argued that the superconducting state of FeSe$_{1-x}$S$_x$ exhibits Bogoliubov Fermi surfaces for $x>0.17$. These Bogoliubov Fermi surfaces appear together with broken time-reversal symmetry and surprisingly demonstrate nematic behavior in a structurally tetragonal phase. Through a symmetry-based analysis of Bogoliubov Fermi surfaces that can arise from broken time-reversal symmetry, we argue that the likely origin of time-reversal symmetry breaking is due to magnetic toroidal order. We show that this magnetic toroidal order naturally appears as a consequence of either static N\'{e}el antiferromagnetic order or due to the formation of a spontaneous pair density wave superconducting order. Finally, we reveal that independent of the presence of Bogoliubov Fermi surfaces, supercurrents will induce N\'{e}el magnetic order in many Fe-based superconductors.

[1]  P. Hirschfeld,et al.  Microscopic origins of ultranodal states in spin-1/2 systems , 2023, 2305.15569.

[2]  Y. Barlas,et al.  Pair Density Waves from Local Band Geometry. , 2022, Physical review letters.

[3]  Weipeng Chen,et al.  Pair density wave facilitated by Bloch quantum geometry in nearly flat band multiorbital superconductors , 2022, Science China Physics, Mechanics & Astronomy.

[4]  A. Daido,et al.  Quantum geometric effect on Fulde-Ferrell-Larkin-Ovchinnikov superconductivity , 2022, Physical Review B.

[5]  Kunihiko Hashimoto,et al.  Pure nematic quantum critical point accompanied by a superconducting dome , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[7]  P. Hirschfeld,et al.  Mechanism for fluctuating pair density wave , 2021, Nature communications.

[8]  S. Hayami,et al.  Analysis of model parameter dependences on the second-order nonlinear conductivity in $\mathcal{PT}$-symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains , 2021, 2109.14132.

[9]  Yukio Tanaka,et al.  A phenomenological theory of superconductor diodes , 2021, New Journal of Physics.

[10]  A. Daido,et al.  Intrinsic Superconducting Diode Effect. , 2021, Physical review letters.

[11]  L. Fu,et al.  Supercurrent diode effect and finite-momentum superconductors , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[12]  T. Shibauchi,et al.  Thermodynamics of transition to BCS-BEC crossover superconductivity in FeSe$_{1-x}$S$_x$ , 2021, 2105.00739.

[13]  S. Hoshino,et al.  Odd-frequency pairing inherent in a Bogoliubov Fermi liquid , 2021, Physical Review B.

[14]  A. Coldea Electronic Nematic States Tuned by Isoelectronic Substitution in Bulk FeSe1−x S x , 2020, Frontiers in Physics.

[15]  Andreas Kreisel,et al.  On the Remarkable Superconductivity of FeSe and Its Close Cousins , 2020, Symmetry.

[16]  I. Herbut,et al.  Bogoliubov-Fermi Surfaces in Noncentrosymmetric Multicomponent Superconductors. , 2020, Physical review letters.

[17]  T. Shibauchi,et al.  Exotic Superconducting States in FeSe-based Materials , 2020, Journal of the Physical Society of Japan.

[18]  S. Hoshino,et al.  Electronic multipoles and multiplet pairs induced by Pomeranchuk and Cooper instabilities of Bogoliubov Fermi surfaces , 2020, 2004.06925.

[19]  P. Hirschfeld,et al.  Bogoliubov Fermi surfaces in spin- 12 systems: Model Hamiltonians and experimental consequences , 2020, 2004.00621.

[20]  E. Moon,et al.  Instability of j=32 Bogoliubov Fermi surfaces , 2019, 1911.08487.

[21]  H. Menke,et al.  Bogoliubov Fermi surfaces stabilized by spin-orbit coupling , 2019, Physical Review B.

[22]  P. Hirschfeld,et al.  Topological ultranodal pair states in iron-based superconductors , 2019, Nature Communications.

[23]  E. Rodriguez,et al.  The fourth ferroic order: Current status on ferrotoroidic materials , 2019, Journal of Solid State Chemistry.

[24]  T. Nomoto,et al.  Classification of topological crystalline superconducting nodes on high-symmetry lines: Point nodes, line nodes, and Bogoliubov Fermi surfaces , 2018, Physical Review B.

[25]  H. Menke,et al.  Bogoliubov Fermi surfaces: General theory, magnetic order, and topology , 2018, Physical Review B.

[26]  S. Hayami,et al.  Classification of atomic-scale multipoles under crystallographic point groups and application to linear response tensors , 2018, Physical Review B.

[27]  H. Kontani,et al.  Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx , 2017, Proceedings of the National Academy of Sciences.

[28]  S. Hayami,et al.  Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals , 2017, 1712.02927.

[29]  T. Shibauchi,et al.  Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx , 2017, Science Advances.

[30]  A. Schnyder,et al.  Inflated nodes and surface states in superconducting half-Heusler compounds , 2017, 1707.02739.

[31]  M. Weinert,et al.  Resilient Nodeless d-Wave Superconductivity in Monolayer FeSe. , 2017, Physical review letters.

[32]  M. Sigrist,et al.  Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems , 2017, 1705.07126.

[33]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[34]  C. Timm,et al.  Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry. , 2016, Physical review letters.

[35]  T. Shibauchi,et al.  Nematic quantum critical point without magnetism in FeSe1−xSx superconductors , 2016, Proceedings of the National Academy of Sciences.

[36]  C. Giorgio,et al.  Evolution of the superconducting properties in FeSe 1 − x S x , 2015 .

[37]  M. Fiebig,et al.  Primary ferrotoroidicity in antiferromagnets , 2015 .

[38]  T. Wolf,et al.  Suppression of orbital ordering by chemical pressure in FeSe1-xSx , 2015, 1508.05016.

[39]  H. Hosono,et al.  Superconductivity and phase instability of NH3-free Na-intercalated FeSe1-zSz , 2014, Nature Communications.

[40]  M. Kashyap,et al.  Emergent loop current order from pair density wave superconductivity , 2014, 1406.4959.

[41]  Y. Motome,et al.  Toroidal order in metals without local inversion symmetry , 2014, 1404.1156.

[42]  Y. Kopaev Toroidal ordering in crystals , 2009 .

[43]  C. Felser,et al.  Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe(1.01)Se. , 2009, Physical review letters.

[44]  D. Phelan,et al.  Pressure-induced effects on the structure of the FeSe superconductor , 2009, 0902.0971.

[45]  Y. Takano,et al.  Substitution Effects on FeSe Superconductor , 2008, 0811.1123.

[46]  Nicola A. Spaldin,et al.  The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect , 2008 .

[47]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[48]  Nicola A. Spaldin,et al.  Towards a microscopic theory of toroidal moments in bulk periodic crystals , 2007, 0706.1974.

[49]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[50]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[51]  V. Mineev,et al.  Helical phases in superconductors , 1994 .

[52]  V. M. Dubovik,et al.  Toroid moments in electrodynamics and solid-state physics , 1990 .

[53]  Y. Yanase,et al.  Anapole superconductivity from PT -symmetric mixed-parity interband pairing , 2021 .

[54]  A. Hinz,et al.  Pain in patients with multiple sclerosis: a complex assessment including quantitative and qualitative measurements provides for a disease-related biopsychosocial pain model , 2011, Journal of pain research.