Block preconditioners for finite element discretization of incompressible flow with thermal convection

SUMMARYWe derive block preconditioners for a finite element discretization of incompressible flow coupled toheat transport by the Boussinesq approximation. Our techniques rely on effectively approximating theSchur complement obtained by eliminating the fluid variables to obtain an equation for temperature alone.Additionally, the method utilizes existing block-structured preconditioners and multilevel methods for theNavier—Stokes equations and scalar convection-diffusion. We find that the preconditioner remains robustand scalable even when the subsolves are applied quite inexactly. Copyright c 0000 John Wiley & Sons,Ltd. Received ... KEY WORDS: Finite element, incompressible flow, Benard convection, multiphysics, block precondi-´tioner. 1. INTRODUCTIONIn this paper, we extend block preconditioners for inf-sup stable finite element discretizations of theincompressible Navier–Stokes equations,  u+ uru+ rp= fru= 0;(1)posed on some domain ˆR d for d= 2;3 and equipped with appropriate boundary conditions, toa particular non-dimensionalization of a coupled fluid-thermal problem, Benard convection:´ u+ uru+ rp= RaPrgT^ru= 01Pr T+ urT= 0;(2)again posed on some domain along with boundary conditions. The fluid velocity and pressureare uand p, respectively, in both equations, and the temperature is T. The in (1) is the fluidviscosity. The Rayleigh number Rameasures the ratio of energy from buoyant forces to viscous

[1]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[2]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[3]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[4]  John N. Shadid,et al.  Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations , 2007, SIAM J. Sci. Comput..

[5]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[6]  J. Nitsche,et al.  ON DIRICHLET PROBLEMS USING SUBSPACES WITH NEARLY ZERO BOUNDARY CONDITIONS , 1972 .

[7]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[8]  Ilse C. F. Ipsen,et al.  GMRES and the minimal polynomial , 1996 .

[9]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[10]  Paul Lin,et al.  INITIAL PERFORMANCE OF FULLY-COUPLED AMG AND APPROXIMATE BLOCK FACTORIZATION PRECONDITIONERS FOR SOLUTION OF IMPLICIT FE RESISTIVE MHD , 2010 .

[11]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[12]  David E. Keyes,et al.  Pseudotransient Continuation and Differential-Algebraic Equations , 2003, SIAM J. Sci. Comput..

[13]  Michael A. Heroux AztecOO user guide. , 2004 .

[14]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[15]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[16]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[17]  Michael A. Heroux,et al.  Amesos: A Set of General Interfaces to Sparse Direct Solver Libraries , 2006, PARA.

[18]  Robert C. Kirby,et al.  From Functional Analysis to Iterative Methods , 2010, SIAM Rev..

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[21]  M. Heinkenschloss,et al.  Large-Scale PDE-Constrained Optimization , 2003 .

[22]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[23]  Roland Becker,et al.  Mesh adaptation for Dirichlet flow control via Nitsche's method , 2002 .

[24]  Paul Lin,et al.  A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift‐diffusion, flow/transport/reaction, resistive MHD , 2010 .