A posteriori initial imperfection identification in shell buckling problems

The current research seeks to demonstrate that an inverse solution approach, leveraging nonlinear finite element analysis with a divide and conquer type stochastic search algorithm, can identify the presence of localized denting imperfections in cylindrical shell structures. This imperfection field identification is achieved using rather sparse displacement measurements taken at safe, service loading conditions. Both the existence and nature of the imperfection field present in a given shell structure instance are determined. These inferred imperfections are subsequently used to make reasonably accurate predictions regarding the actual shell structure strength at ultimate loading.

[1]  S. Gould The Structure of Evolutionary Theory , 2002 .

[2]  Manolis Papadrakakis,et al.  The effect of material and thickness variability on the buckling load of shells with random initial imperfections , 2005 .

[3]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[4]  Carol Ann Featherston,et al.  Imperfection sensitivity of curved panels under combined compression and shear , 2003 .

[5]  B. Reddy,et al.  Introductory Functional Analysis , 1998 .

[6]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[7]  A. A. El Damatty,et al.  A finite element optimization technique to determine critical imperfections of shell structures , 2001 .

[8]  Manolis Papadrakakis,et al.  FINITE-ELEMENT ANALYSIS OF CYLINDRICAL PANELS WITH RANDOM INITIAL IMPERFECTIONS , 2004 .

[9]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[10]  G. Schuëller,et al.  Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections , 2007 .

[11]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[12]  Francesco Benedettini,et al.  Buckling Experiments: Experimental Methods in Buckling of Thin–Walled Structures Vol. 1: Basic Concepts, Columns, Beams and Plates J. Singer, J. Arbocz and T. Weller John Wiley & Sons, Chichester , 1999 .

[13]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[14]  B. Edlund Buckling of metallic shells: Buckling and postbuckling behaviour of isotropic shells, especially cylinders , 2007 .

[15]  Vissarion Papadopoulos,et al.  The effect of non-uniformity of axial loading on the buckling behaviour of shells with random imperfections , 2007 .

[16]  H. Langtangen Computational Partial Differential Equations , 1999 .

[17]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[18]  Dieter Dinkler,et al.  Imperfection Sensitivity and Limit Loads of Spherical Shells under Radial Pressure , 2005 .

[19]  J. Górski,et al.  Shells with random geometric imperfections simulation — based approach , 2002 .

[20]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[21]  Gui-rong Liu,et al.  Computational Inverse Techniques in Nondestructive Evaluation , 2003 .

[22]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[23]  R. H. Gallagher,et al.  A discrete element procedure for thin-shell instability analysis. , 1967 .

[24]  Mark A. Peletier,et al.  Cylindrical shell buckling: a characterization of localization and periodicity , 2003 .

[25]  Zenon Waszczyszyn,et al.  Neural prediction of buckling loads of cylindrical shells with geometrical imperfections , 2002 .

[26]  Z. Bažant,et al.  Stability Of Structures , 1991 .

[27]  L. Donnell,et al.  Beams, plates and shells , 1976, Finite Element Analysis.

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .