Variational multiscale proper orthogonal decomposition: Navier‐stokes equations

We develop a variational multiscale proper orthogonal decomposition reduced-order model for turbulent incompressible Navier-Stokes equations. The error analysis of the full discretization of the model is presented. All error contributions are considered: the spatial discretization error (due to the finite element discretization), the temporal discretization error (due to the backward Euler method), and the proper orthogonal decomposition truncation error. Numerical tests for a three-dimensional turbulent flow past a cylinder at Reynolds number Re=1000 show the improved physical accuracy of the new model over the standard Galerkin and mixing-length proper orthogonal decomposition reduced-order models. The high computational efficiency of the new model is also showcased. Finally, the theoretical error estimates are confirmed by numerical simulations of a two-dimensional Navier-Stokes problem.

[1]  Sivaguru S. Ravindran,et al.  Error analysis for Galerkin POD approximation of the nonstationary Boussinesq equations , 2011 .

[2]  W. Layton,et al.  A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..

[3]  Zhu Wang,et al.  Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations , 2013, Math. Comput..

[4]  Jens Lang,et al.  A POD-Galerkin Reduced Model with Updated Coefficients for Smagorinsky LES , 2010 .

[5]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[6]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[7]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[8]  John R. Singler,et al.  New POD Error Expressions, Error Bounds, and Asymptotic Results for Reduced Order Models of Parabolic PDEs , 2014, SIAM J. Numer. Anal..

[9]  Volker John,et al.  Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .

[10]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[11]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[12]  Belinda B. King,et al.  Reduced Order Controllers for Spatially Distributed Systems via Proper Orthogonal Decomposition , 2004, SIAM J. Sci. Comput..

[13]  Volker John,et al.  Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..

[14]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[15]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[16]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[17]  J. A. Burns,et al.  Reduced-Order Models for Optimal Control of Vortex-Shedding , 2008 .

[18]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[19]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[20]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[21]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[22]  Jing Chen,et al.  Mixed Finite Element Formulation and Error Estimates Based on Proper Orthogonal Decomposition for the Nonstationary Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..

[23]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[24]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.

[25]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[26]  Zhu Wang,et al.  Variational Multiscale Proper Orthogonal Decomposition: Convection-Dominated Convection-Diffusion Equations , 2011, 1103.2729.

[27]  D. Chapelle,et al.  Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples , 2012 .

[28]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[29]  W. Layton,et al.  A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .

[30]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[31]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[32]  Zhu Wang,et al.  Two-level discretizations of nonlinear closure models for proper orthogonal decomposition , 2011, J. Comput. Phys..

[33]  T. Geveci,et al.  On the convergence of a time discretization scheme for the Navier-Stokes equations , 1989 .

[34]  Imran Akhtar,et al.  Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding using Fluidic Actuators , 2008 .

[35]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[36]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[37]  Jean-Luc Guermond,et al.  Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs linéaires monotones , 1999 .

[38]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[39]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .