Variational multiscale proper orthogonal decomposition: Navier‐stokes equations
暂无分享,去创建一个
[1] Sivaguru S. Ravindran,et al. Error analysis for Galerkin POD approximation of the nonstationary Boussinesq equations , 2011 .
[2] W. Layton,et al. A connection between subgrid scale eddy viscosity and mixed methods , 2002, Appl. Math. Comput..
[3] Zhu Wang,et al. Variational multiscale proper orthogonal decomposition: Convection-dominated convection-diffusion-reaction equations , 2013, Math. Comput..
[4] Jens Lang,et al. A POD-Galerkin Reduced Model with Updated Coefficients for Smagorinsky LES , 2010 .
[5] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[6] Nadine Aubry,et al. The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.
[7] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[8] John R. Singler,et al. New POD Error Expressions, Error Bounds, and Asymptotic Results for Reduced Order Models of Parabolic PDEs , 2014, SIAM J. Numer. Anal..
[9] Volker John,et al. Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .
[10] Volker John,et al. A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[11] Ohannes A. Karakashian,et al. On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .
[12] Belinda B. King,et al. Reduced Order Controllers for Spatially Distributed Systems via Proper Orthogonal Decomposition , 2004, SIAM J. Sci. Comput..
[13] Volker John,et al. Finite element error analysis of a variational multiscale method for the Navier-Stokes equations , 2007, Adv. Comput. Math..
[14] R. Rannacher,et al. Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .
[15] Roger Temam,et al. Navier-Stokes Equations and Turbulence by C. Foias , 2001 .
[16] Rolf Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .
[17] J. A. Burns,et al. Reduced-Order Models for Optimal Control of Vortex-Shedding , 2008 .
[18] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[19] Stefan Volkwein,et al. Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..
[20] L. Sirovich. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .
[21] L. Berselli,et al. Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .
[22] Jing Chen,et al. Mixed Finite Element Formulation and Error Estimates Based on Proper Orthogonal Decomposition for the Nonstationary Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..
[23] Thomas J. R. Hughes,et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .
[24] Traian Iliescu,et al. Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison , 2011, 1106.3585.
[25] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[26] Zhu Wang,et al. Variational Multiscale Proper Orthogonal Decomposition: Convection-Dominated Convection-Diffusion Equations , 2011, 1103.2729.
[27] D. Chapelle,et al. Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples , 2012 .
[28] K. Kunisch,et al. Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .
[29] W. Layton,et al. A two-level variational multiscale method for convection-dominated convection-diffusion equations , 2006 .
[30] S. Volkwein,et al. MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .
[31] Thomas J. R. Hughes,et al. Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .
[32] Zhu Wang,et al. Two-level discretizations of nonlinear closure models for proper orthogonal decomposition , 2011, J. Comput. Phys..
[33] T. Geveci,et al. On the convergence of a time discretization scheme for the Navier-Stokes equations , 1989 .
[34] Imran Akhtar,et al. Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding using Fluidic Actuators , 2008 .
[35] L. Sirovich. Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .
[36] William Layton,et al. Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .
[37] Jean-Luc Guermond,et al. Stabilisation par viscosité de sous-maille pour l'approximation de Galerkin des opérateurs linéaires monotones , 1999 .
[38] Meinhard E. Mayer,et al. Navier-Stokes Equations and Turbulence , 2008 .
[39] J. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .