Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis

[1]  R. Curi,et al.  Regulation of Inflammation by Short Chain Fatty Acids , 2011, Nutrients.

[2]  Janet B W Williams,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[3]  J. Tack,et al.  REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY The Serotonin Signaling System: From Basic Understanding To Drug Development for Functional GI Disorders , 2007 .

[4]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[5]  Rustem F. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015, Cell.

[6]  E. Severance,et al.  Metagenomic Sequencing Indicates That the Oropharyngeal Phageome of Individuals With Schizophrenia Differs From That of Controls. , 2015, Schizophrenia bulletin.

[7]  A. Graff-Guerrero,et al.  Elevated Myo-Inositol, Choline, and Glutamate Levels in the Associative Striatum of Antipsychotic-Naive Patients With First-Episode Psychosis: A Proton Magnetic Resonance Spectroscopy Study With Implications for Glial Dysfunction. , 2016, Schizophrenia bulletin.

[8]  D. Cain,et al.  Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long–Evans rat: Further development of a rodent model of autism , 2009, Behavioural Brain Research.

[9]  R. Murray,et al.  Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. , 1999, Archives of general psychiatry.

[10]  David F. Horrobin,et al.  The membrane hypothesis of schizophrenia , 1994, Schizophrenia Research.

[11]  E. Walker,et al.  Diagnostic and Statistical Manual of Mental Disorders , 2013 .

[12]  J. Versalovic,et al.  Lactobacillus saerimneri and Lactobacillus ruminis: novel human-derived probiotic strains with immunomodulatory activities. , 2009, FEMS microbiology letters.

[13]  M. Tansey,et al.  The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? , 2017, npj Parkinson's Disease.

[14]  Jens Roat Kultima,et al.  An integrated catalog of reference genes in the human gut microbiome , 2014, Nature Biotechnology.

[15]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[16]  Jesse R. Zaneveld,et al.  Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences , 2013, Nature Biotechnology.

[17]  Robert G. Beiko,et al.  STAMP: statistical analysis of taxonomic and functional profiles , 2014, Bioinform..

[18]  G. N. Lance,et al.  Mixed-Data Classificatory Programs I - Agglomerative Systems , 1967, Aust. Comput. J..

[19]  L. Garey,et al.  Increase in HLA‐DR Immunoreactive Microglia in Frontal and Temporal Cortex of Chronic Schizophrenics , 2000, Journal of neuropathology and experimental neurology.

[20]  Arthur W. Toga,et al.  1H MRSI evidence of metabolic abnormalities in childhood-onset schizophrenia , 2004, NeuroImage.

[21]  D. Shen,et al.  Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. , 1996, The Journal of pharmacology and experimental therapeutics.

[22]  S. Abbott,et al.  16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls , 2007, Journal of Clinical Microbiology.

[23]  Jurre J. Kamphorst,et al.  Analysis of Fatty Acid Metabolism Using Stable Isotope Tracers and Mass Spectrometry. , 2015, Methods in enzymology.

[24]  G. Macfarlane,et al.  Regulation of short-chain fatty acid production , 2003, Proceedings of the Nutrition Society.

[25]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[26]  F. Bäckhed,et al.  Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits , 2014, Cell.

[27]  G. Werner The Biochemical Bases of Psychoses , 1964 .

[28]  A. Carlsson,et al.  EFFECT OF CHLORPROMAZINE OR HALOPERIDOL ON FORMATION OF 3METHOXYTYRAMINE AND NORMETANEPHRINE IN MOUSE BRAIN. , 2009, Acta pharmacologica et toxicologica.

[29]  Songnian Hu,et al.  Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study , 2018, Schizophrenia Research.

[30]  A. J. Wahba,et al.  Differential requirements for polypeptide chain initiation complex formation at the three bacteriophage R17 initiator regions , 1977, Nucleic Acids Res..

[31]  A. Jong,et al.  Cellular mechanisms of microbial proteins contributing to invasion of the blood–brain barrier , 2001, Cellular microbiology.

[32]  G. Jackson,et al.  Neurobiological findings in early phase schizophrenia , 2000, Brain Research Reviews.

[33]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[34]  T. Dinan,et al.  The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? , 2016, Neurochemistry International.

[35]  J. McGrath,et al.  Schizophrenia: a concise overview of incidence, prevalence, and mortality. , 2008, Epidemiologic reviews.

[36]  Peter B. McGarvey,et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches , 2014, Bioinform..

[37]  M. Keshavan,et al.  Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy , 2013, Schizophrenia Research.

[38]  R. Mrak,et al.  Microglia and neuroinflammation: a pathological perspective , 2004 .

[39]  Lars Klapal,et al.  Changes in Neuronal Excitability by Activated Microglia: Differential Na+ Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18 , 2016, Front. Neurol..

[40]  E. Mayer,et al.  Principles and clinical implications of the brain–gut–enteric microbiota axis , 2009, Nature Reviews Gastroenterology &Hepatology.

[41]  Haroun Shah,et al.  Gastrointestinal microflora studies in late-onset autism. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[42]  R. Chan,et al.  In vivo gamma-aminobutyric acid and glutamate levels in people with first-episode schizophrenia: A proton magnetic resonance spectroscopy study , 2017, Schizophrenia Research.

[43]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[44]  M. Angley,et al.  Elevated Fecal Short Chain Fatty Acid and Ammonia Concentrations in Children with Autism Spectrum Disorder , 2012, Digestive Diseases and Sciences.

[45]  Maria Saarela,et al.  Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response , 2017, Schizophrenia Research.

[46]  D. Kinney,et al.  A unifying hypothesis of schizophrenia: abnormal immune system development may help explain roles of prenatal hazards, post-pubertal onset, stress, genes, climate, infections, and brain dysfunction. , 2010, Medical hypotheses.

[47]  H. Lei,et al.  Tumour necrosis factor-α causes an increase in blood-brain barrier permeability during sepsis , 2001 .

[48]  Anne L McCartney,et al.  Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. , 2005, Journal of medical microbiology.

[49]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[50]  W. Banks,et al.  Passage of cytokines across the blood-brain barrier. , 1995, Neuroimmunomodulation.

[51]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[52]  W. V. D. Kemp,et al.  Explorations into the membrane hypothesis of schizophrenia , 2011 .

[53]  Ruben C. Gur,et al.  Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia , 2015, Front. Behav. Neurosci..

[54]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[55]  Rob Knight,et al.  Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease , 2016, Cell.

[56]  S. Finegold,et al.  Real-Time PCR Quantitation of Clostridia in Feces of Autistic Children , 2004, Applied and Environmental Microbiology.

[57]  Takahiro A. Kato,et al.  Cytokines and schizophrenia: Microglia hypothesis of schizophrenia , 2009, Psychiatry and clinical neurosciences.

[58]  M. Maes,et al.  The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease , 2016, Molecular Neurobiology.

[59]  C. Pantelis,et al.  Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. , 2003, Schizophrenia bulletin.

[60]  T. Dinan,et al.  Collective unconscious: how gut microbes shape human behavior. , 2015, Journal of psychiatric research.

[61]  D. Matias,et al.  The impact of microglial activation on blood-brain barrier in brain diseases , 2014, Front. Cell. Neurosci..

[62]  Tapio Salakoski,et al.  An expanded evaluation of protein function prediction methods shows an improvement in accuracy , 2016, Genome Biology.

[63]  R. C. Hall,et al.  Global assessment of functioning. A modified scale. , 1995, Psychosomatics.

[64]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[65]  M. Kavaliers,et al.  Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats , 2012, Behavioural Brain Research.

[66]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[67]  P. Smith The tantalizing links between gut microbes and the brain , 2015, Nature.

[68]  M. Bleuler A 23-year longitudinal study of 208 schizophrenics and impressions in regard to the nature of schizophrenia , 1968 .

[69]  P. Falkai,et al.  Evidence for activation of microglia in patients with psychiatric illnesses , 1999, Neuroscience Letters.

[70]  H. H. Kornhuber,et al.  Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia , 1980, Neuroscience Letters.

[71]  L. Shutter,et al.  Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. , 2004, Journal of neurotrauma.

[72]  E. Castro-Nallar,et al.  Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls , 2015, PeerJ.

[73]  T. Dinan,et al.  The impact of gut microbiota on brain and behaviour: implications for psychiatry , 2015, Current opinion in clinical nutrition and metabolic care.

[74]  Duccio Cavalieri,et al.  New evidences on the altered gut microbiota in autism spectrum disorders , 2017, Microbiome.

[75]  James B. Adams,et al.  Gastrointestinal flora and gastrointestinal status in children with autism -- comparisons to typical children and correlation with autism severity , 2011, BMC gastroenterology.

[76]  T. Macdonald,et al.  Butyrate upregulates stromelysin-1 production by intestinal mesenchymal cells. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[77]  John F. Cryan,et al.  May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry , 2016, CNS Drugs.

[78]  R. Simone,et al.  Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation , 2005, Brain Research Reviews.

[79]  Anushya Muruganujan,et al.  PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees , 2012, Nucleic Acids Res..

[80]  Marco Gobbetti,et al.  Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified , 2013, PloS one.

[81]  D. Ostatníková,et al.  Gastrointestinal microbiota in children with autism in Slovakia , 2015, Physiology & Behavior.

[82]  A. Kraneveld,et al.  Altered gut microbiota and activity in a murine model of autism spectrum disorders , 2014, Brain, Behavior, and Immunity.

[83]  Alessandra Bertoldo,et al.  Microglial Activity in People at Ultra High Risk of Psychosis and in Schizophrenia: An [(11)C]PBR28 PET Brain Imaging Study. , 2015, The American journal of psychiatry.

[84]  A. Vitelli,et al.  Model-based hypothesis of gut microbe populations and gut/brain barrier permeabilities in the development of regressive autism. , 2014, Medical hypotheses.