IONISE: An Ionospheric Observational Network for Irregularity and Scintillation in East and Southeast Asia

An Ionospheric Observational Network for Irregularity and Scintillation in East and Southeast Asia (IONISE) is developed to identify and study the short‐term and fine‐scale ionospheric variations over China. The IONISE network mainly includes three crossed chains of Beidou geostationary satellite total electron content (TEC)/scintillation receivers along 110°E, 23°N, and 40°N respectively, multistatic portable digital ionosondes and bistatic very high‐frequency radars. Based on the IONISE observations, we report some preliminary results of ionospheric disturbances and irregularities, including (1) initially generated and zonally drifting equatorial plasma bubbles and related scintillations, (2) traveling ionospheric disturbances from middle to low latitudes, (3) drift of strong sporadic E structures over a wide area of more than 1,000 km, (4) fine‐scale ionospheric perturbation and regional TEC gradient, and (5) general features of ionospheric response to geomagnetic storms. Possible mechanisms responsible for these ionospheric phenomena are discussed. The IONISE provides new data set for investigation on ionospheric disturbances of various scales in a broad region with dense observations along specific latitude/longitude.

[1]  F. Ding,et al.  Coupling Between E Region Quasi‐Periodic Echoes and F Region Medium‐Scale Traveling Ionospheric Disturbances at Low Latitudes , 2020, Journal of Geophysical Research: Space Physics.

[2]  H. Le,et al.  New Features of the Enhancements in Electron Density at Low Latitudes , 2020, Journal of Geophysical Research: Space Physics.

[3]  B. Ning,et al.  All‐Sky Interferometric Meteor Radar Observations of Zonal Structure and Drifts of Low‐Latitude Ionospheric E Region Irregularities , 2019, Earth and Space Science.

[4]  L. Hu,et al.  Low Latitude Ionospheric TEC Oscillations Associated With Periodic Changes in IMF Bz Polarity , 2019, Geophysical Research Letters.

[5]  L. Hu,et al.  The possibility of using all-sky meteor radar to observe ionospheric E-region field-aligned irregularities , 2019, Science China Technological Sciences.

[6]  Y. Otsuka,et al.  Daytime Periodic Wave‐like Structures in the Ionosphere Observed at Low Latitudes over the Asian‐Australian Sector Using Total Electron Content from Beidou Geostationary Satellites , 2019, Journal of Geophysical Research: Space Physics.

[7]  L. Hu,et al.  Observation of Short‐Period Ionospheric Disturbances Using a Portable Digital Ionosonde at Sanya , 2018, Radio Science.

[8]  L. Hu,et al.  Statistical Study on the Occurrences of Postsunset Ionospheric E, Valley, and F Region Irregularities and Their Correlations Over Low‐Latitude Sanya , 2018, Journal of Geophysical Research: Space Physics.

[9]  Xinan Yue,et al.  Was Magnetic Storm the Only Driver of the Long‐Duration Enhancements of Daytime Total Electron Content in the Asian‐Australian Sector Between 7 and 12 September 2017? , 2018 .

[10]  Biqiang Zhao,et al.  Strong Sporadic E Occurrence Detected by Ground‐Based GNSS , 2018 .

[11]  Tianjiao Yuan,et al.  Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017 , 2018 .

[12]  A. Patra,et al.  Daytime zonal drifts in the ionospheric 150 km and E regions estimated using EAR observations , 2017 .

[13]  Xinan Yue,et al.  Development of the Beidou Ionospheric Observation Network in China for space weather monitoring , 2017 .

[14]  Fuqing Huang,et al.  Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network , 2017 .

[15]  W. Wan,et al.  First observation of presunset ionospheric F region bottom‐type scattering layer , 2017 .

[16]  W. Wan,et al.  Investigation of ionospheric TEC over China based on GNSS data , 2016 .

[17]  K. Venkatesh,et al.  Positive and negative GPS‐TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector , 2016 .

[18]  Y. Otsuka,et al.  Enhanced ionospheric plasma bubble generation in more active ITCZ , 2016 .

[19]  I. Batista,et al.  Wave structure and polarization electric field development in the bottomside F layer leading to postsunset equatorial spread F , 2015 .

[20]  Kosuke Heki,et al.  Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content observations in Japan , 2015, Earth, Planets and Space.

[21]  N. Nishitani,et al.  Statistical study of medium-scale traveling ionospheric disturbances using SuperDARN Hokkaido ground backscatter data for 2011 , 2015, Earth, Planets and Space.

[22]  Y. Otsuka,et al.  Airglow observations of nighttime medium‐scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low‐latitude limit , 2014 .

[23]  Kefei Zhang,et al.  An analysis of the quiet time day‐to‐day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region , 2014 .

[24]  Kosuke Heki,et al.  Two‐dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan , 2014 .

[25]  Mamoru Yamamoto,et al.  Longitudinal characteristics of spread F backscatter plumes observed with the EAR and Sanya VHF radar in Southeast Asia , 2013 .

[26]  Jing Liu,et al.  A case study of postmidnight enhancement in F‐layer electron density over Sanya of China , 2013 .

[27]  A. Patra,et al.  Direct detection of wavelike spatial structure at the bottom of the F region and its role on the formation of equatorial plasma bubble , 2013 .

[28]  Min Wang,et al.  East‐west differences in F‐region electron density at midlatitude: Evidence from the Far East region , 2013 .

[29]  C. Valladares,et al.  The Low‐Latitude Ionosphere Sensor Network: Initial results , 2012 .

[30]  Weixing Wan,et al.  Precursor signatures and evolution of post‐sunset equatorial spread‐F observed over Sanya , 2012 .

[31]  W. Wan,et al.  Positive ionospheric storm effects at Latin America longitude during the superstorm of 20–22 November 2003: revisit , 2012 .

[32]  Libo Liu,et al.  The first time observations of low-latitude ionospheric irregularities by VHF radar in Hainan , 2012 .

[33]  Takuya Tsugawa,et al.  GPS observations of medium-scale traveling ionospheric disturbances over Europe , 2011 .

[34]  T. Yokoyama,et al.  On postmidnight low-latitude ionospheric irregularities during solar minimum: 1. Equatorial Atmosphere Radar and GPS-TEC observations in Indonesia , 2011 .

[35]  Feng Ding,et al.  Climatology of medium‐scale traveling ionospheric disturbances observed by a GPS network in central China , 2011 .

[36]  Yen-Hsyang Chu,et al.  Coordinated sporadic E layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites , 2011 .

[37]  Roland T. Tsunoda,et al.  On seeding equatorial spread F during solstices , 2010 .

[38]  S. Kawamura,et al.  A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes , 2010 .

[39]  M. Larsen,et al.  Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: Assessing dynamic stability in the lower thermosphere , 2009 .

[40]  A. Patra,et al.  A study on the low-latitude daytime E region plasma irregularities using coordinated VHF radar, rocket-borne, and ionosonde observations , 2009 .

[41]  Feng Ding,et al.  Characterizing the 10 November 2004 storm‐time middle‐latitude plasma bubble event in Southeast Asia using multi‐instrument observations , 2009 .

[42]  E. R. de Paula,et al.  Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign , 2009 .

[43]  Y. Otsuka,et al.  Statistical study of relationship between medium-scale traveling ionospheric disturbance and sporadic E layer activities in summer night over Japan , 2008 .

[44]  T. Yokoyama,et al.  Three‐dimensional simulation of the coupled Perkins and Es‐layer instabilities in the nighttime midlatitude ionosphere , 2008 .

[45]  S. Solomon,et al.  Midlatitude nighttime enhancement in F region electron density from global COSMIC measurements under solar minimum winter condition , 2008 .

[46]  R. Roble,et al.  A dayside ionospheric positive storm phase driven by neutral winds , 2008 .

[47]  T. Maruyama,et al.  Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia , 2007 .

[48]  I. Batista,et al.  Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator , 2007 .

[49]  N. Kotake,et al.  Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California , 2007 .

[50]  Takashi Maruyama,et al.  A super bubble detected by dense GPS network at east Asian longitudes , 2006 .

[51]  Jann‐Yenq Liu,et al.  Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field , 2005 .

[52]  T. Yokoyama,et al.  Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field , 2004 .

[53]  A. Coster,et al.  A quantitative explanation for the phenomenon known as storm‐enhanced density , 2004 .

[54]  Takeshi Sagiya,et al.  A decade of GEONET: 1994–2003 —The continuous GPS observation in Japan and its impact on earthquake studies— , 2004 .

[55]  I. Batista,et al.  Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling , 2003 .

[56]  M. Yamamoto,et al.  Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer , 2002 .

[57]  G. Hussey,et al.  Simultaneous 50‐MHz coherent backscatter and digital ionosonde observations in the midlatitude E region , 1998 .

[58]  Xiaoqing Pi,et al.  Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .

[59]  Mamoru Yamamoto,et al.  Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities , 1991 .

[60]  J. Whitehead Recent work on mid-latitude and equatorial sporadic-E , 1989 .

[61]  Lu Quan-Ming,et al.  CORRELATION BETWEEN EMISSION INTENSITIES IN DAYSIDE AURORAL ARCS AND PRECIPITATING ELECTRON SPECTRA , 2017 .

[62]  N. Kotake,et al.  Statistical Study of Medium-Scale Traveling Ionospheric Disturbances Observed with a GPS Receiver Network in Japan , 2011 .

[63]  Tadahiko Ogawa,et al.  Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images , 2003 .

[64]  Tadahiko Ogawa,et al.  Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances , 2002 .

[65]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .

[66]  G. J. Bailey,et al.  Nighttime enhancements in ionospheric electron content in the northern and southern hemispheres , 1994 .

[67]  G. J. Bailey,et al.  Solar and magnetic activity effects on the latitudinal variations of nighttime TEC enhancement , 1991 .