A point-set-based approximation for areal objects: A case study of representing localities

Abstract Since partonomy knowledge is an important component of human cognition, we propose a point-set-based region (PSBR) model to approximate areal objects, especially vague areal objects. Two major properties of this model are that it is cognition-accordant and that it can represent vague regions easily. Given a point-set-based model, we can estimate the corresponding region using various methods, including convex hull, minimum bounding box, one-class support vector machine, and point density. We can examine the spatial relationships between two PSBRs using the derived areal objects. Additionally, we present a number of methods to compute relationships directly, based on two PSBRs. In the case study, we use a number of localities in China to demonstrate applications of the PSBR model. The proposed model can be implemented easily in an object-relational database management system. Hence, it provides a reasonable representation for vague objects that takes both manageability and approximation into account, especially now that Web 2.0 is making point data more convenient to collect.

[1]  M. Kennedy Georeferencing: The Geographic Associations of Information , 2008 .

[2]  Edward Yourdon,et al.  Object-oriented analysis , 2012 .

[3]  Michael F. Goodchild,et al.  Introduction to digital gazetteer research , 2008, Int. J. Geogr. Inf. Sci..

[4]  Peter Fisher,et al.  Sorites paradox and vague geographies , 2000, Fuzzy Sets Syst..

[5]  Achille C. Varzi Vagueness in geography , 2001 .

[6]  Kevin Lynch,et al.  The Image of the City , 1960 .

[7]  Cidália Costa Fonte,et al.  Areas of fuzzy geographical entities , 2004, Int. J. Geogr. Inf. Sci..

[8]  T. W. Freeman,et al.  Megalopolis: The Urbanized Northeastern Seaboard of the United States , 1962 .

[9]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[10]  Michael F. Goodchild,et al.  Towards a General Field model and its order in GIS , 2008, Int. J. Geogr. Inf. Sci..

[11]  Anthony G. Cohn,et al.  The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries , 2020 .

[12]  Jean-Claude Thill,et al.  Spatial queries with qualitative locations in spatial information systems , 2006, Comput. Environ. Urban Syst..

[13]  Daniel Z. Sui,et al.  The wikification of GIS and its consequences: Or Angelina Jolie's new tattoo and the future of GIS , 2008, Comput. Environ. Urban Syst..

[14]  Eric Pawson Gottmann, J. 1961: Megalopolis. The urbanized northeastern seaboard of the United States. New York: The Twentieth Century Fund , 2008 .

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  Barry Smith,et al.  On Drawing Lines on a Map , 1995, COSIT.

[17]  Markus Schneider,et al.  Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial Data Types , 1999, SSD.

[18]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[19]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[20]  Achille C. Varzi Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology , 1996, Data Knowl. Eng..

[21]  Michael F. Goodchild,et al.  Citizens as Voluntary Sensors: Spatial Data Infrastructure in the World of Web 2.0 , 2007, Int. J. Spatial Data Infrastructures Res..

[22]  Pragya Agarwal,et al.  Semantic Categories Underlying the Meaning of 'Place' , 2007, COSIT.

[23]  Michael F. Goodchild,et al.  Towards a general theory of geographic representation in GIS , 2007, Int. J. Geogr. Inf. Sci..

[24]  P. Burrough,et al.  Geographic Objects with Indeterminate Boundaries , 1996 .

[25]  Erlend Tøssebro,et al.  An Advanced Discrete Model for Uncertain Spatial Data , 2002, WAIM.

[26]  Isabelle Bloch,et al.  Fuzzy spatial relationships for image processing and interpretation: a review , 2005, Image Vis. Comput..

[27]  Hideo Joho,et al.  Deliverable type: Contributing WP: , 2022 .

[28]  Jo Wood,et al.  Fuzziness and Ambiguity in Multi-Scale Analysis of Landscape Morphometry , 2005 .

[29]  Ola Ahlqvist,et al.  Representing and negotiating uncertain geospatial concepts - Where are the exurban areas? , 2009, Comput. Environ. Urban Syst..

[30]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[31]  Maggi Kelly,et al.  Support vector machines for predicting distribution of Sudden Oak Death in California , 2005 .

[32]  Qinghua Guo,et al.  The point-radius method for georeferencing locality descriptions and calculating associated uncertainty , 2004, Int. J. Geogr. Inf. Sci..

[33]  Y. Tuan,et al.  Place: An Experiential Perspective , 1975 .

[34]  Edward Yourdon,et al.  Object-oriented analysis (2nd ed.) , 1991 .

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Johan van Benthem,et al.  Handbook of Spatial Logics , 2007 .

[37]  Douglas Herrmann,et al.  A Taxonomy of Part-Whole Relations , 1987, Cogn. Sci..

[38]  Michael F. Goodchild,et al.  Geographical data modeling , 1992 .

[39]  Donna Peuquet,et al.  A conceptual framework for incorporating cognitive principles into geographical database representation , 2000, Int. J. Geogr. Inf. Sci..

[40]  Achille C. Varzi Spatial Reasoning and Ontology: Parts, Wholes, and Locations , 2007, Handbook of Spatial Logics.

[41]  Michael F. Goodchild,et al.  Foundations of Geographic Information Science , 2003 .

[42]  Xinming Tang Spatial object model[l]ing in fuzzy topological spaces : with applications to land cover change , 2004 .

[43]  Zhang Yi,et al.  A Cognitive Approach to Modeling Vague Geographical Features:A Case Study of Zhongguancun , 2008 .

[44]  Thomas Behr,et al.  Topological Relationships of Complex Points and Complex Regions , 2001, ER.

[45]  Harith Alani,et al.  Voronoi-based region approximation for geographical information retrieval with gazetteers , 2001, Int. J. Geogr. Inf. Sci..

[46]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[47]  Alfred Stein,et al.  A system of types and operators for handling vague spatial objects , 2007, Int. J. Geogr. Inf. Sci..

[48]  Eliseo Clementini,et al.  Integration of Imperfect Spatial Information , 2001, J. Vis. Lang. Comput..

[49]  Sungsoon Hwang,et al.  Modeling Localities with Fuzzy Sets and GIS , 2005 .

[50]  Peter A. Burrough,et al.  Natural Objects with Indeterminate Boundaries , 2020 .

[51]  Daniel R. Montello,et al.  Regions in Geography , 2003, Foundations of Geographic Information Science.

[52]  Frederick E. Petry,et al.  Fuzzy Modeling with Spatial Information for Geographic Problems , 2008 .

[53]  Michael F. Goodchild,et al.  Where's Downtown?: Behavioral Methods for Determining Referents of Vague Spatial Queries , 2003 .

[54]  Yu Liu On Internal Cardinal Direction Relations , .

[55]  Joshua A. Fishman,et al.  Megalopolis: The Urbanized Northeastern Seaboard of the United States. , 1963 .

[56]  Min Deng,et al.  A Statistical Model for Directional Relations Between Spatial Objects , 2008, GeoInformatica.