Gaussian Bounds for Noise Correlation of Functions
暂无分享,去创建一个
[1] On the Number of Catenaries That May be Drawn Through Two Fixed Points , 1895 .
[2] W. Sheppard. On the Application of the Theory of Error to Cases of Normal Distribution and Normal Correlation , 1899 .
[3] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[4] H. Gebelein. Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .
[5] A. Rényi. On measures of dependence , 1959 .
[6] R. Niemi,et al. A mathematical solution for the probability of the paradox of voting. , 1968, Behavioral science.
[7] A. Bonami. Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .
[8] W. Beckner. Inequalities in Fourier analysis , 1975 .
[9] V. Rotaŕ. Limit Theorems for Multilinear Forms and Quasipolynomial Functions , 1976 .
[10] Colin E Bell,et al. A Random Voting Graph Almost Surely Has a Hamiltonian Cycle When the Number of Alternatives Is Large , 1981 .
[11] B. Efron,et al. The Jackknife Estimate of Variance , 1981 .
[12] C. Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process , 1985 .
[13] J. Szulga,et al. Hypercontraction principle and random multilinear forms , 1988 .
[14] Nathan Linial,et al. The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[15] S. Janson. Gaussian Hilbert Spaces , 1997 .
[16] D. Nualart. GAUSSIAN HILBERT SPACES (Cambridge Tracts in Mathematics 129) By SVANTE JANSON: 340 pp., £40.00, ISBN 0 521 56128 0 (Cambridge University Press, 1997) , 1998 .
[17] Ehud Friedgut,et al. Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..
[18] Alan M. Frieze,et al. Quick Approximation to Matrices and Applications , 1999, Comb..
[19] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[20] W. T. Gowers,et al. A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .
[21] Y. Rinott,et al. A remark on quadrant normal probabilities in high dimensions , 2001 .
[22] Irit Dinur,et al. The importance of being biased , 2002, STOC '02.
[23] Gil Kalai,et al. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..
[24] Subhash Khot. On the power of unique 2-prover 1-round games , 2002, STOC '02.
[25] K. Oleszkiewicz. On a Nonsymmetric Version of the Khinchine-Kahane Inequality , 2003 .
[26] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[27] Guy Kindler,et al. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[28] Gil Kalai,et al. NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .
[29] Ryan O'Donnell,et al. Hardness amplification within NP , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.
[30] Ryan O'Donnell,et al. Noise stability of functions with low influences: Invariance and optimality , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[31] Venkatesan Guruswami,et al. A New Multilayered PCP and the Hardness of Hypergraph Vertex Cover , 2005, SIAM J. Comput..
[32] Terence Tao. Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..
[33] Luca Trevisan,et al. Gowers uniformity, influence of variables, and PCPs , 2005, STOC '06.
[34] P. Wolff,et al. Hypercontractivity of simple random variables , 2007 .
[35] Ryan O'Donnell,et al. Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..
[36] Elchanan Mossel,et al. Noise stability of functions with low influences: Invariance and optimality , 2005, IEEE Annual Symposium on Foundations of Computer Science.
[37] Prasad Raghavendra,et al. Optimal algorithms and inapproximability results for every CSP? , 2008, STOC.
[38] Subhash Khot,et al. Vertex cover might be hard to approximate to within 2-/spl epsiv/ , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..
[39] Elchanan Mossel,et al. Approximation Resistant Predicates from Pairwise Independence , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.
[40] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[41] Elchanan Mossel,et al. Conditional Hardness for Approximate Coloring , 2009, SIAM J. Comput..