Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient.

Fragment molecular orbital molecular dynamics (FMO-MD) with periodic boundary conditions is performed on liquid water using the analytic energy gradient, the electrostatic potential point charge approximation, and the electrostatic dimer approximation. Compared to previous FMO-MD simulations of water that used an approximate energy gradient, inclusion of the response terms to provide a fully analytic energy gradient results in better energy conservation in the NVE ensemble for liquid water. An FMO-MD simulation that includes the fully analytic energy gradient and two body corrections (FMO2) gives improved energy conservation compared with a previously calculated FMO-MD simulation with an approximate energy gradient and including up to three body corrections (FMO3).

[1]  Kazuo Kitaura,et al.  On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory , 2004 .

[2]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[3]  Kazuo Kitaura,et al.  Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method , 2009 .

[4]  Kazuo Kitaura,et al.  Fully analytic energy gradient in the fragment molecular orbital method. , 2011, The Journal of chemical physics.

[5]  Shigenori Tanaka,et al.  Fragment molecular orbital calculations under periodic boundary condition , 2011 .

[6]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[7]  Jan H. Jensen,et al.  Chapter 10 The Effective Fragment Potential: A General Method for Predicting Intermolecular Interactions , 2007 .

[8]  Yuto Komeiji,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD), a quantum simulation tool for large molecular systems , 2009 .

[9]  Kazuo Kitaura,et al.  Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method , 2012 .

[10]  Mark S. Gordon,et al.  The Effective Fragment Potential Method: A QM-Based MM Approach to Modeling Environmental Effects in Chemistry , 2001 .

[11]  Robert Zaleśny,et al.  Linear-Scaling Techniques in Computational Chemistry and Physics , 2011 .

[12]  Sotiris S. Xantheas,et al.  Cooperativity and Hydrogen Bonding Network in Water Clusters , 2000 .

[13]  Kazuo Kitaura,et al.  Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. , 2012, The Journal of chemical physics.

[14]  Takeshi Ishikawa,et al.  A fully quantum mechanical simulation study on the lowest n-π* state of hydrated formaldehyde , 2007 .

[15]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[16]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[17]  Yuichi Inadomi,et al.  PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. , 2004, Computational biology and chemistry.

[18]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[19]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[20]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[21]  Kaori Fukuzawa,et al.  Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA) , 2010 .

[22]  Takeshi Ishikawa,et al.  How does an S(N)2 reaction take place in solution? Full ab initio MD simulations for the hydrolysis of the methyl diazonium ion. , 2008, Journal of the American Chemical Society.

[23]  Yuto Komeiji,et al.  Three-body expansion and generalized dynamic fragmentation improve the fragment molecular orbital-based molecular dynamics (FMO-MD)☆ , 2010 .

[24]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[25]  K. Kitaura,et al.  Multilayer formulation of the fragment molecular orbital method (FMO). , 2005, The journal of physical chemistry. A.

[26]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[27]  Kazuo Kitaura,et al.  Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method , 2010 .

[28]  Kaori Fukuzawa,et al.  Accuracy of fragmentation in ab initio calculations of hydrated sodium cation , 2009 .

[29]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[30]  S. Harvey,et al.  The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition , 1998, J. Comput. Chem..

[31]  Yuichi Inadomi,et al.  Fragment molecular orbital method: application to molecular dynamics simulation, ‘ab initio FMO-MD’ , 2003 .

[32]  Takeshi Ishikawa,et al.  Fragment Molecular Orbital method‐based Molecular Dynamics (FMO‐MD) as a simulator for chemical reactions in explicit solvation , 2009, J. Comput. Chem..

[33]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[34]  Yuto Komeiji,et al.  Fragment molecular orbital method: analytical energy gradients , 2001 .

[35]  Noriyuki Kurita,et al.  Fragment molecular orbital method with density functional theory and DIIS convergence acceleration , 2003 .