A Jordan curve theorem with respect to a pretopology on ℤ2
暂无分享,去创建一个
[1] Ralph Kopperman,et al. A Jordan surface theorem for three-dimensional digital spaces , 1991, Discret. Comput. Geom..
[2] T. Yung Kong,et al. A topological approach to digital topology , 1991 .
[3] Josef Slapal. Convenient Closure Operators on \mathbb Z2 , 2009, IWCIA.
[4] P. R. Meyer,et al. Computer graphics and connected topologies on finite ordered sets , 1990 .
[5] Josef Šlapal,et al. Digital Jordan curves , 2006 .
[6] Josef Slapal. Closure operations for digital topology , 2003, Theor. Comput. Sci..
[7] P. R. Meyer,et al. Boundaries in digital planes , 1990 .
[8] Longin Jan Latecki,et al. Digital Topology , 1994 .
[9] J. Lapal. A quotient-universal digital topology , 2008 .
[10] Josef Slapal. A digital analogue of the Jordan curve theorem , 2004, Discret. Appl. Math..
[11] Christer O. Kiselman,et al. Digital Jordan Curve Theorems , 2000, DGCI.
[12] Josef Slapal,et al. A quotient-universal digital topology , 2008, Theor. Comput. Sci..
[13] Josef Slapal. A Jordan Curve Theorem in the Digital Plane , 2011, IWCIA.
[14] ˇ. Josef. Convenient Closure Operators on Z 2 , 2009 .