Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds

The central result of this paper is a generalization of the Ehresmann fibration theorem to the infinite-dimensional and/or non-proper setting. With this aim, we introduce the concepts of strong submersion and of mapping with uniformly split kernels. First applications include a global Implicit Function Theorem and a necessary and sufficient version of Hadamard's global invertibility criterion in the setting of Finsler manifolds. Another major application makes use of the idea of asymptotic critical value (not critical point), which helps formulate various generalizations of the Palais-Smale condition for morphisms of Finsler manifolds, not merely functionals. We obtain a critical point theory for morphisms of Finsler manifolds extending many results known only for functionals, notably Ekeland's "variational" principle. These results are used to discuss a new approach to Lagrange multiplier and nonlinear eigenvalue problems, and to develop an intrinsic critical point theory for complex-analytic functionals. The latter reveals an intimate connection between conditions of Palais-Smale type and the structure of polynomial automorphisms (Jacobian Conjecture).

[1]  Global surjectivity of submersions via contractibility of the fibers , 1995 .

[2]  R. Palais Lusternik-Schnirelman theory on Banach manifolds , 1966 .

[3]  Joram Lindenstrauss,et al.  On the complemented subspaces problem , 1971 .

[4]  K. Deimling Nonlinear functional analysis , 1985 .

[5]  Roy Plastock,et al.  Homeomorphisms between Banach spaces , 1974 .

[6]  Giovanna Cerami Un criterio di esistenza per i punti critici su varieta'illimitate , 1978 .

[7]  David Wright,et al.  On the Jacobian conjecture , 1981 .

[8]  $C^1$ partitions of unity on nonseparable Hilbert space , 1971 .

[9]  Enrique Artal Bartolo,et al.  On polynomials whose fibers are irreducible with no critical points , 1994 .

[10]  Michael J. Razar Polynomial maps with constant Jacobian , 1979 .

[11]  James Eells,et al.  Foliations and Fibrations , 1967 .

[12]  M. Nagata A theorem of Gutwirth , 1971 .

[13]  F. Browder Variational methods for nonlinear elliptic eigenvalue problems , 1965 .

[14]  Differentiable norms in Banach spaces , 1964 .

[15]  S. Abhyankar Lectures on expansion techniques in algebraic geometry , 1977 .

[16]  M. Berger,et al.  On the singularities of nonlinear Fredholm operators of positive index , 1980 .

[17]  O. Keller,et al.  Ganze Cremona-Transformationen , 1939 .

[18]  P. Hartman Ordinary Differential Equations , 1965 .

[19]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[20]  B. Beauzamy Introduction to Banach spaces and their geometry , 1985 .

[21]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[22]  A. Magnus On polynomial Solutions of a differential equation , 1955 .

[23]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[24]  C. Ehresmann Les connexions infinitésimales dans un espace fibré différentiable , 1951 .

[25]  S. Fučík Spectral Analysis of Nonlinear Operators , 1973 .

[26]  Yosef Stein,et al.  The total reducibility order of a polynomial in two variables , 1989 .

[27]  Phillip A. Griffiths,et al.  Introduction to Algebraic Curves , 1989 .

[28]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[29]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[30]  Kossivi Adjamagbo,et al.  A resultant criterion and formula for the inversion of a rational map in two variables , 1990 .

[31]  M. Fried,et al.  On the Jacobian conjecture and the configurations of roots. , 1983 .

[32]  Y. Nakai,et al.  A generalization of Magnus' theorem , 1976 .