Noise perturbed generalized Mandelbrot sets

[1]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[2]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[3]  M. Klein Mandelbrot set in a non-analytic map , 1988 .

[4]  Notizen: Mandelbrot Set in a Non-Analtytic Map , 1988 .

[5]  Uday G. Gujar,et al.  Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..

[6]  Earl F. Glynn The evolution of the gingerbread man , 1991, Comput. Graph..

[7]  William H. Press,et al.  Portable Random Number Generators , 1992 .

[8]  Leon O. Chua,et al.  EXPERIMENTAL SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL , 1994 .

[9]  J. Argyris,et al.  The influence of noise on the correlation dimension of chaotic attractors , 1998 .

[10]  C. Beck Physical meaning for Mandelbrot and Julia sets , 1999 .

[11]  Xingyuan Wang,et al.  ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .

[12]  J. Argyris,et al.  On the Julia set of the perturbed Mandelbrot map , 2000 .

[13]  Ioannis Andreadis,et al.  On perturbations of the Mandelbrot map , 2000 .

[14]  J. Argyris,et al.  On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .

[15]  Young Ik Kim,et al.  Accurate computation of component centers in the degree-n bifurcation set , 2004 .

[16]  Fausto Montoya Vitini,et al.  Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..

[17]  Gonzalo Álvarez,et al.  External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..

[18]  Joshua C. Sasmor,et al.  Fractals for functions with rational exponent , 2004, Comput. Graph..

[19]  Xingyuan Wang,et al.  Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..