Noise perturbed generalized Mandelbrot sets
暂无分享,去创建一个
[1] Heinz-Otto Peitgen,et al. The science of fractal images , 2011 .
[2] Pierre L'Ecuyer,et al. Efficient and portable combined random number generators , 1988, CACM.
[3] M. Klein. Mandelbrot set in a non-analytic map , 1988 .
[4] Notizen: Mandelbrot Set in a Non-Analtytic Map , 1988 .
[5] Uday G. Gujar,et al. Fractals from z <-- z alpha + c in the complex c-plane , 1991, Comput. Graph..
[6] Earl F. Glynn. The evolution of the gingerbread man , 1991, Comput. Graph..
[7] William H. Press,et al. Portable Random Number Generators , 1992 .
[8] Leon O. Chua,et al. EXPERIMENTAL SYNCHRONIZATION OF CHAOS USING CONTINUOUS CONTROL , 1994 .
[9] J. Argyris,et al. The influence of noise on the correlation dimension of chaotic attractors , 1998 .
[10] C. Beck. Physical meaning for Mandelbrot and Julia sets , 1999 .
[11] Xingyuan Wang,et al. ANALYSIS OF C-PLANE FRACTAL IMAGES FROM z ← zα + c FOR (α < 0) , 2000 .
[12] J. Argyris,et al. On the Julia set of the perturbed Mandelbrot map , 2000 .
[13] Ioannis Andreadis,et al. On perturbations of the Mandelbrot map , 2000 .
[14] J. Argyris,et al. On the Julia sets of a noise-perturbed Mandelbrot map , 2002 .
[15] Young Ik Kim,et al. Accurate computation of component centers in the degree-n bifurcation set , 2004 .
[16] Fausto Montoya Vitini,et al. Chaotic bands in the Mandelbrot set , 2004, Comput. Graph..
[17] Gonzalo Álvarez,et al. External arguments of Douady cauliflowers in the Mandelbrot set , 2004, Comput. Graph..
[18] Joshua C. Sasmor,et al. Fractals for functions with rational exponent , 2004, Comput. Graph..
[19] Xingyuan Wang,et al. Research on fractal structure of generalized M-J sets utilized Lyapunov exponents and periodic scanning techniques , 2006, Appl. Math. Comput..