Polarisation fields in III-nitrides: Effects and control

III-Nitrides are materials that have revolutionised the lighting industry allowing for the development of high brightness and efficiency white light emitting diodes (LEDs), enabling cost and energy savings at an unprecedented scale. However, there remain several obstacles to the further enhancement of the efficiency of LEDs, particularly for emission at longer wavelengths. The existence of polarisation fields as an inherent property of wurtzite III-nitride materials severely hampers LED performance. The origin of these fields due to the deviation from an ideal tetrahedral bonding structure and their relation to strain has been addressed in this review. The effect of the polarisation fields on the band structure of heterostructure quantum wells, known as the quantum confined stark effect, and its implications for the efficiency and spectral stability of LEDs have also been reviewed. Finally, the effectiveness and viability of several proposed methods of mitigating the harmful effects of the polarisation fields, such as the growth of III-nitrides on alternative planes, doping, strain engineering and growth of cubic GaN, have been addressed.

[1]  Shuji Nakamura,et al.  History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination , 2013, Proceedings of the IEEE.

[2]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[3]  S. Denbaars,et al.  High power and high efficiency green light emitting diode on free‐standing semipolar (11$ \bar 2 $2) bulk GaN substrate , 2007 .

[4]  M. Asif Khan,et al.  Visible light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire , 2004 .

[5]  J. Y. Chen,et al.  Effects of silicon doping on the nanostructures of InGaN/GaN quantum wells , 2005 .

[6]  C. Humphreys,et al.  Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice. , 2011, Ultramicroscopy.

[7]  M. Stevens,et al.  Effect of layer thickness on the electrostatic potential in InGaN quantum wells , 2004 .

[8]  A. G. Cullis,et al.  Electron-beam-induced segregation in InGaN/GaN multiple-quantum wells , 2003 .

[9]  C. Surya,et al.  Photoluminescence of rapid-thermal annealed Mg-doped GaN films , 1999, Proceedings 1999 IEEE Hong Kong Electron Devices Meeting (Cat. No.99TH8458).

[10]  Chih-Chung Yang,et al.  Nanostructures and Carrier Localization Behaviors of Green-luminescence InGaN/GaN Quantum-well Structures of Various Silicon-doping Conditions , 2004 .

[11]  Motoaki Iwaya,et al.  GaN growth on (30&3macr;8) 4H‐SiC substrate for reduction of internal polarization , 2005 .

[12]  F. Scholz,et al.  Semipolar GaN grown on foreign substrates: a review , 2012 .

[13]  James S. Speck,et al.  Milliwatt Power Blue InGaN/GaN Light-Emitting Diodes on Semipolar GaN Templates , 2005 .

[14]  Sebastian Metzner,et al.  Growth and coalescence behavior of semipolar $(11{\bar {2}}2)$ GaN on pre‐structured r‐plane sapphire substrates , 2011 .

[15]  Mathew C. Schmidt,et al.  High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes , 2007 .

[16]  Shuji Nakamura,et al.  Electroluminescence Characterization of (2021) InGaN/GaN Light Emitting Diodes with Various Wavelengths , 2010 .

[17]  C. Wetzel,et al.  Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates , 2010 .

[18]  Berthold Hahn,et al.  Green ThinGaN power‐LED demonstrates 100 lm , 2008 .

[19]  Shinichi Tanaka,et al.  High optical polarization ratio from semipolar (202¯1¯) blue-green InGaN/GaN light-emitting diodes , 2011 .

[20]  S. Denbaars,et al.  Highly efficient broad‐area blue and white light‐emitting diodes on bulk GaN substrates , 2009 .

[21]  Peter M. Asbeck,et al.  Spontaneous and piezoelectric polarization effects in III-V nitride heterostructures , 1999 .

[22]  S. Denbaars,et al.  Stacking fault formation in the long wavelength InGaN/GaN multiple quantum wells grown on m-plane GaN , 2010 .

[23]  X. W. Sun,et al.  On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer , 2012 .

[24]  F. Ponce,et al.  Determination by Electron Holography of the Electronic Charge Distribution at Threading Dislocations in Epitaxial GaN , 2002 .

[25]  H. Morkoç,et al.  Piezoelectric effects on the optical properties of GaN/AlxGa1−xN multiple quantum wells , 1998 .

[26]  John L. Hall,et al.  Nobel Prize for Physics , 1937, Nature.

[27]  N. El-Masry,et al.  Undoped and doped GaN thin films deposited on high-temperature monocrystalline AlN buffer layers on vicinal and on-axis α(6H)-SiC(0001) substrates via organometallic vapor phase epitaxy , 1996 .

[28]  H. Ohta,et al.  Dislocation-Free m-Plane InGaN/GaN Light-Emitting Diodes on m-Plane GaN Single Crystals , 2006 .

[29]  Room temperature green light emission from nonpolar cubic InGaN∕GaN multi-quantum-wells , 2007, cond-mat/0702100.

[30]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[31]  Qian Sun,et al.  Improving microstructural quality of semipolar (112̱2) GaN on m-plane sapphire by a two-step growth process , 2009 .

[32]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[33]  J. Yugami,et al.  Vox/Eox-Driven Breakdown of Ultrathin SiON Gate Dielectrics in p-Type Metal Oxide Semiconductor Field Effect Transistors under Low-Voltage Inversion Stress , 2007 .

[34]  Hao-Chung Kuo,et al.  Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes , 2010 .

[35]  M. Esmaeili,et al.  Investigation of optical properties of modulation doped GaN/AlGaN MQWS nanostructures , 2009 .

[36]  V. Caignaert,et al.  酸素欠損ペロブスカイトSrCo1‐xNbxO3‐δの磁気輸送特性に及ぼすニオブドーピングの影響 , 2005 .

[37]  Maria R. Correia,et al.  Compositional pulling effects in InxGa1-x N/GaN layers: A combined depth-resolved cathodoluminescence and Rutherford backscattering/channeling study , 2001 .

[38]  A. Uedono,et al.  Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors , 2006, Nature materials.

[39]  C. Humphreys,et al.  Investigation of unintentional indium incorporation into GaN barriers of InGaN/GaN quantum well structures , 2015 .

[40]  S. Chang,et al.  Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition , 2004 .

[41]  Colin J. Humphreys,et al.  Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope , 2003 .

[42]  S. Denbaars,et al.  Low extended defect density nonpolar m-plane GaN by sidewall lateral epitaxial overgrowth , 2008 .

[43]  Yan Zhang,et al.  Dislocation reduction in gallium nitride films using scandium nitride interlayers , 2007 .

[44]  Tae-Kyung Yoo,et al.  The effect of silicon doping in the selected barrier on the electroluminescence of InGaN∕GaN multiquantum well light emitting diode , 2007 .

[45]  S. Denbaars,et al.  Demonstration of Nonpolar m-Plane InGaN/GaN Light-Emitting Diodes on Free-Standing m-Plane GaN Substrates , 2005 .

[46]  S. Denbaars,et al.  Improved quality (112¯0)a-plane GaN with sidewall lateral epitaxial overgrowth , 2006 .

[47]  Julia Kowalski,et al.  Lighting the way: Perspectives on the global lighting market , 2012 .

[48]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[49]  L. Hultman,et al.  Interface structure of hydride vapor phase epitaxial GaN grown with high-temperature reactively sputtered AlN buffer , 2000 .

[50]  S. Denbaars,et al.  Characterization of blue-green m-plane InGaN light emitting diodes , 2009 .

[51]  A. Carlo,et al.  EFFECTS OF MACROSCOPIC POLARIZATION IN III-V NITRIDE MULTIPLE QUANTUM WELLS , 1999, cond-mat/9905186.

[52]  Greiner,et al.  p- and n-type cubic GaN epilayers on GaAs. , 1996, Physical review. B, Condensed matter.

[53]  S. Denbaars,et al.  Green Semipolar (202̄1̄) InGaN Light-Emitting Diodes with Small Wavelength Shift and Narrow Spectral Linewidth , 2013 .

[54]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[55]  S. Denbaars,et al.  High-Power Blue-Violet Semipolar (202̄1̄) InGaN/GaN Light-Emitting Diodes with Low Efficiency Droop at 200 A/cm2 , 2011 .

[56]  P. Mierry,et al.  Improved semipolar (112¯2) GaN quality using asymmetric lateral epitaxy , 2009 .

[57]  T. Matsuoka,et al.  GaN Growth on Novel Lattice‐Matching Substrate: Tilted M‐Plane Sapphire , 2001 .

[58]  T. Mukai,et al.  White light emitting diodes with super-high luminous efficacy , 2010 .

[59]  Pierre Gibart,et al.  Metal organic vapour phase epitaxy of GaN and lateral overgrowth , 2004 .

[60]  J. Northrup GaN and InGaN(112̱2) surfaces: Group-III adlayers and indium incorporation , 2009 .

[61]  Lianxi Zheng,et al.  Cubic-phase GaN light-emitting diodes , 1999 .

[62]  M. Kunzer,et al.  Self-compensation in Mg doped p-type GaN grown by MOCVD , 1998 .

[63]  T. Mukai,et al.  Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates , 2006 .

[64]  Shen Guang-di,et al.  Improved quality of InGaN/GaN multiple quantum wells by a strain relief layer , 2006 .

[65]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[66]  Tao Wang,et al.  Investigation of the emission mechanism in InGaN/GaN-based light-emitting diodes , 2001 .

[67]  S. Denbaars,et al.  Time-resolved photoluminescence of In x Ga 1 − x N / G a N multiple quantum well structures: Effect of Si doping in the barriers , 2001 .

[68]  S. Wirth,et al.  Pressure-induced successive structural transitions and high-pressure tetragonal phase of Fe1.08Te , 2012 .

[69]  C. Humphreys,et al.  Evaluation of growth methods for the heteroepitaxy of non-polar (112¯0) GAN on sapphire by MOVPE , 2014 .

[70]  S. Denbaars,et al.  Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices , 2012 .

[71]  S. Denbaars,et al.  Indium incorporation and emission properties of nonpolar and semipolar InGaN quantum wells , 2012 .

[72]  R. Dupuis,et al.  Effect of Silicon Doping in the Quantum-Well Barriers on the Electrical and Optical Properties of Visible Green Light-Emitting Diodes , 2008, IEEE Photonics Technology Letters.

[73]  M. M. Wong,et al.  Local conductivity and surface photovoltage variations due to magnesium segregation in p-type GaN , 2004 .

[74]  Debdeep Jena,et al.  Polarization Effects in Semiconductors: From Ab Initio Theory to Device Applications , 2007 .

[75]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[76]  James S. Speck,et al.  Properties of nonpolar a-plane InGaN∕GaN multiple quantum wells grown on lateral epitaxially overgrown a-plane GaN , 2005 .

[77]  R. Oliver Growth and characterisation of nitride nanostructures , 2002 .

[78]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[79]  R. Dupuis,et al.  Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[80]  S. J. Berkowitz,et al.  Epitaxial growth and characterization of zinc‐blende gallium nitride on (001) silicon , 1992 .

[81]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[82]  James S. Speck,et al.  Defect reduction in (112̄0) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy , 2003 .

[83]  Isamu Akasaki,et al.  Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells , 2000 .

[84]  J. Biskupek,et al.  Cathodoluminescence of GaInN quantum wells grown on nonpolar a plane GaN: Intense emission from pit facets , 2010 .

[85]  R. A. Oliver,et al.  Carrier localization mechanisms in InxGa1?xN/GaN quantum wells , 2010, 1006.1232.

[86]  N. Ichinose,et al.  Epitaxial Growth of GaN on (1 0 0) β-Ga2O3 Substrates by Metalorganic Vapor Phase Epitaxy , 2004 .

[87]  D. Fu,et al.  Nonpolar m-plane thin film GaN and InGaN/GaN light-emitting diodes on LiAlO2(100) substrates , 2007 .

[88]  S. Denbaars,et al.  30-mW-Class High-Power and High-Efficiency Blue Semipolar (101̄1̄) InGaN/GaN Light-Emitting Diodes Obtained by Backside Roughening Technique , 2010 .

[89]  C. T. Foxon,et al.  Growth and characterization of free‐standing zinc‐blende GaN layers and substrates , 2010 .

[90]  G. Wang,et al.  Improved carrier injection and efficiency droop in InGaN/GaN light-emitting diodes with step-stage multiple-quantum-well structure and hole-blocking barriers , 2013 .

[91]  C. Humphreys,et al.  Defect reduction in non‐polar (11$ \bar 2 $0) GaN grown on (1$ \bar 1 $02) sapphire , 2009, physica status solidi (a).

[92]  James S. Speck,et al.  Optical properties of yellow light-emitting diodes grown on semipolar (112¯2) bulk GaN substrates , 2008 .

[93]  James S. Speck,et al.  Nonpolar InGaN∕GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak , 2004 .

[94]  G. P. Yablonskii,et al.  Development of m-plane GaN anisotropic film properties during MOVPE growth on LiAlO2 substrates , 2010 .

[95]  N. El-Masry,et al.  Strain-balanced InGaN/GaN multiple quantum wells , 2014 .

[96]  Ying-Bing Jiang,et al.  Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100) , 2013 .

[97]  Tao Wang,et al.  Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures , 2000 .

[98]  S. Denbaars,et al.  High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (101̄1̄) Bulk GaN Substrates , 2007 .

[99]  F. Ponce,et al.  Electron holography studies of the charge on dislocations in GaN. , 2001, Physical review letters.

[100]  C. Humphreys,et al.  Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot. , 2007, Physical Review Letters.

[101]  Debdeep Jena,et al.  Polarization Effects in Semiconductors , 2008 .

[102]  Mathew C. Schmidt,et al.  Improved electroluminescence on nonpolar m ‐plane InGaN/GaN quantum wells LEDs , 2007 .

[103]  Oliver Brandt,et al.  Direct experimental determination of the spontaneous polarization of GaN , 2012, 1201.4294.

[104]  L. Jianping,et al.  Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction , 2007 .

[105]  S. Denbaars,et al.  Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays , 2013 .

[106]  D. Bour,et al.  Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography , 2000 .

[107]  S. Denbaars,et al.  Influence of polarity on carrier transport in semipolar (2021¯) and (202¯1) multiple-quantum-well light-emitting diodes , 2012 .

[108]  A. Carlo,et al.  Doping screening of polarization fields in nitride heterostructures , 2000 .

[109]  C. Shih,et al.  Scanning tunneling spectroscopy of quantum well and surface states of thin Ag films grown on GaAs (110) , 2001 .

[110]  S. Denbaars,et al.  High power and high efficiency blue light emitting diode on freestanding semipolar (101¯1¯) bulk GaN substrate , 2007 .

[111]  J. Massies,et al.  Group-III nitride quantum heterostructures grown by molecular beam epitaxy , 2001 .

[112]  A. G. Cullis,et al.  Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision , 2013, Journal of Materials Science.

[113]  S. Denbaars,et al.  Reduction in Thermal Droop Using Thick Single-Quantum-Well Structure in Semipolar (2021) Blue Light-Emitting Diodes , 2012 .

[114]  Alfred Cerezo,et al.  Three-dimensional atom probe analysis of green- and blue-emitting InxGa1−xN∕GaN multiple quantum well structures , 2008 .

[115]  Y. S. Cho,et al.  Reduction of stacking fault density in m-plane GaN grown on SiC , 2008 .

[116]  L. Coldren,et al.  Optical properties of InGaN quantum wells , 1999 .

[117]  R. Dupuis,et al.  Control of quantum-confined Stark effect in InGaN∕GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes , 2008 .

[118]  Fernando Ponce,et al.  Measurement of the piezoelectric field across strained InGaN/GaN layers by electron holography , 1999 .

[119]  C. Burrus,et al.  Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect , 1984 .

[120]  M. Kneissl,et al.  Semipolar GaN grown on m-plane sapphire using MOVPE , 2008 .

[121]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[122]  C. T. Foxon,et al.  Free‐standing zinc‐blende (cubic) GaN substrates grown by a molecular beam epitaxy process , 2008 .

[123]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[124]  D. Cherns,et al.  Electron holography studies of the charge on dislocations in GaN. , 2002, Physical review letters.

[125]  Ian Watson,et al.  Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping , 2002 .

[126]  S. E. Bennett Dislocations and their reduction in GaN , 2010 .

[127]  J. Im,et al.  Reduction of oscillator strength due to piezoelectric fields in G a N / A l x Ga 1 − x N quantum wells , 1998 .