Multiharmonic finite element analysis of a time-periodic parabolic optimal control problem

Abstract - This paper presents the multiharmonic analysis of a distributed parabolic optimal control problem in a time-periodic setting. We prove the existence and uniqueness of the solution of some weak space-time variational formulation for the parabolic time-periodic boundary value problem appearing in the constraints for the optimal control problem. Since the cost functional is quadratic, the optimal control problem is uniquely solvable as well. In order to solve the optimal control problem numerically, we state its optimality system and discretize it by the multiharmonic finite element method leading to a system of linear algebraic equations which decouples into smaller systems. We construct preconditioners for these systems which yield robust convergence rates and optimal complexity for the preconditioned minimal residual method. All systems can be solved totally in parallel. Furthermore, we present a complete analysis for the error introduced by the multiharmonic finite element discretization as well as some numerical results confirming our theoretical findings.

[1]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[2]  Ulrich Langer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust Preconditioned-MinRes-Solver for Distributed Time-Periodic Eddy Current Optimal Control , 2011 .

[3]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[4]  Johannes Kraus,et al.  Additive Schur Complement Approximation and Application to Multilevel Preconditioning , 2012, SIAM J. Sci. Comput..

[5]  Stefan Vandewalle,et al.  On dynamic iteration methods for solving time-periodic differential equations , 1993 .

[6]  Wei Gong,et al.  Space-time finite element approximation of parabolic optimal control problems , 2012, J. Num. Math..

[7]  Clemens Hofreither,et al.  A Rigorous Error Analysis of Coupled FEM-BEM Problems with Arbitrary Many Subdomains , 2013 .

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  Christophe Geuzaine,et al.  Harmonic-balance finite-element modeling of electromagnetic devices: a novel approach , 2002 .

[10]  Joachim Schöberl,et al.  Efficient solvers for nonlinear time-periodic eddy current problems , 2006 .

[11]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[12]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs , 2012 .

[13]  M. Kollmann,et al.  A Robust Preconditioner for Distributed Optimal Control for Stokes Flow with Control Constraints , 2013 .

[14]  Valeria Simoncini,et al.  Stability estimates and structural spectral properties of saddle point problems , 2013, Numerische Mathematik.

[15]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[16]  Stefan Vandewalle,et al.  Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations , 1992, SIAM J. Sci. Comput..

[17]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[18]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[19]  Moritz Diehl,et al.  Nested multigrid methods for time-periodic, parabolic optimal control problems , 2011, Comput. Vis. Sci..

[20]  G. Burton Sobolev Spaces , 2013 .

[21]  Wolfgang Hackbusch,et al.  Fast Numerical Solution of Time-Periodic Parabolic Problems by a Multigrid Method , 1981 .

[22]  Ulrich Langer,et al.  Domain Decomposition Solvers for Frequency-Domain Finite Element Equations , 2011 .

[23]  Ivo Babuška,et al.  Lectures on mathematical foundations of the finite element method. , 1972 .

[24]  Sotoshi Yamada,et al.  Harmonic field calculation by the combination of finite element analysis and harmonic balance method , 1988 .

[25]  Ulrich Langer,et al.  A Robust Preconditioned MinRes Solver for Time-periodic Eddy Current Problems , 2013, Comput. Methods Appl. Math..

[26]  Herbert De Gersem,et al.  Strong coupled multi‐harmonic finite element simulation package , 2000 .

[27]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[28]  F. Tröltzsch,et al.  PDE-constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages , 2012 .

[29]  I. Babuska Error-bounds for finite element method , 1971 .

[30]  Ulrich Langer,et al.  Efficient Solvers for Some Classes of Time-Periodic Eddy Current Optimal Control Problems , 2013 .

[31]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[32]  Helmut Gfrerer,et al.  On Metric Pseudo-(sub)Regularity of Multifunctions and Optimality Conditions for Degenerated Mathematical Programs , 2014 .

[33]  Gary M. Lieberman,et al.  Time-periodic solutions of linear parabolic differential equations , 1999 .

[34]  Clemens Pechstein,et al.  Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems , 2012, Lecture Notes in Computational Science and Engineering.

[35]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[36]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[37]  Svetozar Margenov,et al.  Robust Algebraic Multilevel Methods and Algorithms , 2009 .

[38]  Ulrich Langer,et al.  Domain decomposition solvers for nonlinear multiharmonic finite element equations , 2010, J. Num. Math..

[39]  Oszkar Biro,et al.  Complex representation in nonlinear time harmonic eddy current problems , 1998 .

[40]  Joachim Schöberl,et al.  Numerical analysis of nonlinear multiharmonic eddy current problems , 2005, Numerische Mathematik.

[41]  Stefan Takacs,et al.  Convergence Analysis of All-at-Once Multigrid Methods for Elliptic Control Problems under Partial Elliptic Regularity , 2013, SIAM J. Numer. Anal..

[42]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[43]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[44]  Michael Kolmbauer,et al.  A preconditioned MinRes solver for time‐periodic parabolic optimal control problems , 2013, Numer. Linear Algebra Appl..

[45]  Michael Kolmbauer Efficient solvers for multiharmonic eddy current optimal control problems with various constraints and their analysis , 2013 .

[46]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[47]  W. Zulehner,et al.  A Finite Element Solver for a Multiharmonic Parabolic Optimal Control Problem , 1997 .

[48]  Clemens Pechstein,et al.  On Iterative Substructuring Methods for Multiscale Problems , 2014 .

[49]  Clemens Hofreither,et al.  FETI Solvers for Non-standard Finite Element Equations Based on Boundary Integral Operators , 2014 .