Lineage-specific laminar organization of cortical GABAergic interneurons

[1]  A. Espinosa,et al.  Fate-Restricted Neural Progenitors in the Mammalian Cerebral Cortex , 2012, Science.

[2]  K. Ohki,et al.  Similarity of Visual Selectivity among Clonally Related Neurons in Visual Cortex , 2012, Neuron.

[3]  Y. Dan,et al.  Clonally Related Visual Cortical Neurons Show Similar Stimulus Feature Selectivity , 2012, Nature.

[4]  Atsushi Miyawaki,et al.  [Visualizing spatiotemporal dynamics of multicellular cell-cycle progression]. , 2012, Seikagaku. The Journal of Japanese Biochemical Society.

[5]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[6]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[7]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[8]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[9]  G. Miyoshi,et al.  GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. , 2011, Cerebral cortex.

[10]  S. Lodato,et al.  Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex , 2011, Neuron.

[11]  Pasko Rakic,et al.  Radial Columns in Cortical Architecture: It Is the Composition That Counts , 2010, Cerebral cortex.

[12]  T. Haydar,et al.  Heterogeneity in Ventricular Zone Neural Precursors Contributes to Neuronal Fate Diversity in the Postnatal Neocortex , 2010, The Journal of Neuroscience.

[13]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[14]  Oliviero Carugo Clustering criteria and algorithms. , 2010, Methods in molecular biology.

[15]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[16]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[17]  G. Miyoshi,et al.  Cerebral Cortex doi:10.1093/cercor/bhp038 Characterization of Nkx6-2-Derived , 2009 .

[18]  S. Shi,et al.  Specific synapses develop preferentially among sister excitatory neurons in the neocortex , 2009, Nature.

[19]  Y. Yanagawa,et al.  Random Walk Behavior of Migrating Cortical Interneurons in the Marginal Zone: Time-Lapse Analysis in Flat-Mount Cortex , 2009, The Journal of Neuroscience.

[20]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[21]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[22]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[23]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[24]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[25]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[26]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[27]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[28]  A. Sadikot,et al.  Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype , 2007, The Journal of comparative neurology.

[29]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[30]  Fred H. Gage,et al.  NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus , 2006, Nature.

[31]  O. Marín,et al.  Layer Acquisition by Cortical GABAergic Interneurons Is Independent of Reelin Signaling , 2006, The Journal of Neuroscience.

[32]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[33]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[34]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[35]  H. Tabata,et al.  The Caudal Migratory Stream: A Novel Migratory Stream of Interneurons Derived from the Caudal Ganglionic Eminence in the Developing Mouse Forebrain , 2005, The Journal of Neuroscience.

[36]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[37]  C. Englund,et al.  Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration , 2004, Neuroscience.

[38]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[39]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[40]  P. Rakic,et al.  Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex , 2003, The Journal of Neuroscience.

[41]  Seong-Seng Tan,et al.  Layer Specification of Transplanted Interneurons in Developing Mouse Neocortex , 2003, The Journal of Neuroscience.

[42]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[43]  H. Markram,et al.  Stereotypy in neocortical microcircuits , 2002, Trends in Neurosciences.

[44]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[45]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[46]  T. Weissman,et al.  Neurons derived from radial glial cells establish radial units in neocortex , 2001, Nature.

[47]  Daniel H. Turnbull,et al.  A method for rapid gain-of-function studies in the mouse embryonic nervoussystem , 1999, Nature Neuroscience.

[48]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[49]  C. Cepko,et al.  Lineage analysis using retroviral vectors. , 1998, Current topics in developmental biology.

[50]  Leyuan Shi,et al.  Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. , 1997, Science.

[51]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[52]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[53]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[54]  J. Parnavelas,et al.  Development of vasoactive‐intestinal‐polypeptide‐immunoreactive neurons in the rat occipital cortex: A combined immunohistochemical‐autoradiographic study , 1989, The Journal of comparative neurology.

[55]  C. Cepko,et al.  Clonally related cortical cells show several migration patterns. , 1988, Science.

[56]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[57]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[58]  A. Fairén,et al.  Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex , 1986, The Journal of comparative neurology.

[59]  M. Miller,et al.  Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. , 1985, Brain research.

[60]  P. Emson,et al.  Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  J. Voke,et al.  The visual cortex. , 1983, Nursing mirror.

[62]  P. Rakić Guidance of neurons migrating to the fetal monkey neocortex. , 1971, Brain research.