Transcriptome Analysis of Pseudomonas syringae Identifies New Genes, Noncoding RNAs, and Antisense Activity

ABSTRACT To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.

[1]  Jörg Vogel,et al.  Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome , 2009, Nucleic acids research.

[2]  B. Simmons,et al.  A single-base resolution map of an archaeal transcriptome. , 2010, Genome research.

[3]  R. Sorek,et al.  Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity , 2010, Nature Reviews Genetics.

[4]  L. Ponnala,et al.  Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs , 2009, BMC Genomics.

[5]  J. Vogel,et al.  Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability , 2009, Proceedings of the National Academy of Sciences.

[6]  Thomas M. Keane,et al.  A simple method for directional transcriptome sequencing using Illumina technology , 2009, Nucleic acids research.

[7]  T. Borodina,et al.  Transcriptome analysis by strand-specific sequencing of complementary DNA , 2009, Nucleic acids research.

[8]  Jade Buchanan-Carter,et al.  Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx , 2009, BMC Genomics.

[9]  Brian D. Ondov,et al.  Structure and Complexity of a Bacterial Transcriptome , 2009, Journal of bacteriology.

[10]  M. Lawrence,et al.  Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing , 2009, Nucleic acids research.

[11]  J. Helmann,et al.  Extracytoplasmic Function σ Factors Regulate Expression of the Bacillus subtilis yabE Gene via a cis-Acting Antisense RNA , 2008, Journal of bacteriology.

[12]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[13]  L. Herrera-Estrella,et al.  Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing , 2009, BMC Genomics.

[14]  C. Myers,et al.  Global transcriptional responses of Pseudomonas syringae DC3000 to changes in iron bioavailability in vitro , 2008, BMC Microbiology.

[15]  Ryan D. Morin,et al.  Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. , 2008, BioTechniques.

[16]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[17]  I. Goodhead,et al.  Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution , 2008, Nature.

[18]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[19]  M. Silby,et al.  Overlapping Protein-Encoding Genes in Pseudomonas fluorescens Pf0-1 , 2008, PLoS genetics.

[20]  S. Ranade,et al.  Stem cell transcriptome profiling via massive-scale mRNA sequencing , 2008, Nature Methods.

[21]  C. Myers,et al.  Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. , 2008, Molecular plant-microbe interactions : MPMI.

[22]  C. Myers,et al.  Characterization of the PvdS‐regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads , 2008, Molecular microbiology.

[23]  J. Marden,et al.  Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing , 2008, Molecular ecology.

[24]  J. Helmann,et al.  The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses , 2008, Molecular microbiology.

[25]  M. Pátek,et al.  Chromosomally encoded small antisense RNA in Corynebacterium glutamicum. , 2008, FEMS microbiology letters.

[26]  É. Potvin,et al.  Sigma factors in Pseudomonas aeruginosa. , 2008, FEMS microbiology reviews.

[27]  Jibin Sun,et al.  Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. , 2007, Journal of biotechnology.

[28]  C. Knight,et al.  Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. , 2007, Environmental microbiology.

[29]  T. Thannhauser,et al.  A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. , 2007, Journal of biomolecular techniques : JBT.

[30]  Shane J. Neph,et al.  Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline , 2007, Nucleic acids research.

[31]  X. Cheng,et al.  A novel strategy for systematic identification of natural antisense transcripts of Pseudomonas aeruginosa based on the RNase I protection assay , 2007, Molecular Biology.

[32]  C. Walsh,et al.  CmaE: a transferase shuttling aminoacyl groups between carrier protein domains in the coronamic acid biosynthetic pathway. , 2007, Biochemistry.

[33]  G. Storz,et al.  An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin , 2007, Molecular microbiology.

[34]  J. Ohlrogge,et al.  Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing1[W][OA] , 2007, Plant Physiology.

[35]  B. Bassler,et al.  Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. , 2007, Genes & development.

[36]  J. Xiaolin,et al.  [A novel strategy for systematic identification of natural antisense transcripts of Pseudomonas aeruginosa based on RNase I protection assay]. , 2007, Molekuliarnaia biologiia.

[37]  Monica Vencato,et al.  Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. , 2006, Molecular plant-microbe interactions : MPMI.

[38]  Monica Vencato,et al.  Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis clement, and identifies novel coregulated genes. , 2006, Molecular plant-microbe interactions : MPMI.

[39]  B. Haas,et al.  Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology , 2006, BMC Genomics.

[40]  Xiaoyan Tang,et al.  Genome-wide gene expression analysis of Pseudomonas syringae pv. tomato DC3000 reveals overlapping and distinct pathways regulated by hrpL and hrpRS. , 2006, Molecular plant-microbe interactions : MPMI.

[41]  R. Kulkarni,et al.  Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri , 2006, Nucleic acids research.

[42]  Ilka M. Axmann,et al.  An internal antisense RNA regulates expression of the photosynthesis gene isiA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Fred A. Wright,et al.  Estimation of Expression Indexes for Oligonucleotide Arrays Using the Singular Value Decomposition , 2006 .

[44]  N. Majdalani,et al.  Small RNA regulators and the bacterial response to stress. , 2006, Cold Spring Harbor symposia on quantitative biology.

[45]  Anders Krogh,et al.  Large-scale prokaryotic gene prediction and comparison to genome annotation , 2005, Bioinform..

[46]  Gene H Golub,et al.  Reconstructing the pathways of a cellular system from genome-scale signals by using matrix and tensor computations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Rainer Breitling,et al.  Vector analysis as a fast and easy method to compare gene expression responses between different experimental backgrounds , 2005, BMC Bioinformatics.

[48]  S. Lindow,et al.  Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. , 2005, Molecular plant-microbe interactions : MPMI.

[49]  E. Pareja,et al.  Repetitive extragenic palindromic sequences in the Pseudomonas syringae pv. tomato DC3000 genome: extragenic signals for genome reannotation. , 2005, Research in microbiology.

[50]  J. Tommassen,et al.  Dissemination of Lipid A Deacylases (PagL) among Gram-negative Bacteria , 2005, Journal of Biological Chemistry.

[51]  U. Schnider-Keel,et al.  RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. , 2005, Molecular plant-microbe interactions : MPMI.

[52]  G. Storz,et al.  Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli , 2005, Nucleic acids research.

[53]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[54]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[55]  Gene H Golub,et al.  Integrative analysis of genome-scale data by using pseudoinverse projection predicts novel correlation between DNA replication and RNA transcription. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  S. Gottesman,et al.  Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Lindow,et al.  Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. , 2004, Molecular plant-microbe interactions : MPMI.

[58]  P. Rainey,et al.  IVET experiments in Pseudomonas fluorescens reveal cryptic promoters at loci associated with recognizable overlapping genes. , 2004, Microbiology.

[59]  Víctor de Lorenzo,et al.  The sigma54 regulon (sigmulon) of Pseudomonas putida. , 2003, Environmental microbiology.

[60]  J. Vogel,et al.  RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. , 2003, Nucleic acids research.

[61]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  D. Botstein,et al.  Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  You-Xing Zhao,et al.  RpoN (σ54) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae , 2003 .

[64]  You-Xing Zhao,et al.  RpoN (sigma(54)) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae. , 2003, Plasmid.

[65]  Ian T. Paulsen,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv . tomato DC 3000 , 2003 .

[66]  Anders Krogh,et al.  EasyGene – a prokaryotic gene finder that ranks ORFs by statistical significance , 2003, BMC Bioinformatics.

[67]  Mark Albano,et al.  Microarray analysis of the Bacillus subtilis K‐state: genome‐wide expression changes dependent on ComK , 2002, Molecular microbiology.

[68]  G. Martin,et al.  Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Schreiber,et al.  Vector algebra in the analysis of genome-wide expression data , 2002, Genome Biology.

[70]  F. Gamo,et al.  Global Transcriptional Response of Bacillus subtilis to Heat Shock , 2001, Journal of bacteriology.

[71]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[72]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[73]  J. Courcelle,et al.  Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. , 2001, Genetics.

[74]  P. Lemanceau,et al.  Acyl-Homoserine Lactone Production Is More Common among Plant-Associated Pseudomonas spp. than among Soilborne Pseudomonas spp , 2001, Applied and Environmental Microbiology.

[75]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[76]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  F. Ausubel,et al.  The Alternative Sigma Factor RpoN Is Required for hrpActivity in Pseudomonas syringae pv. Maculicola and Acts at the Level of hrpL Transcription , 2000, Journal of bacteriology.

[78]  V. Deretic,et al.  Dual regulation of mucoidy in Pseudomonas aeruginosa and sigma factor antagonism , 2000, Molecular microbiology.

[79]  E. Morett,et al.  Compilation and analysis of σ54-dependent promoter sequences , 1999 .

[80]  E. Morett,et al.  Compilation and analysis of sigma(54)-dependent promoter sequences. , 1999, Nucleic acids research.

[81]  M. Wösten Eubacterial sigma-factors. , 1998, FEMS microbiology reviews.

[82]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[83]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[84]  G. Salmond,et al.  The bacterial ‘enigma’: cracking the code of cell–cell communication , 1995, Molecular microbiology.

[85]  M. Ullrich,et al.  The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases , 1994, Journal of bacteriology.

[86]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[87]  R. Simons,et al.  Antisense RNA control in bacteria, phages, and plasmids. , 1994, Annual review of microbiology.

[88]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[89]  S. Lory,et al.  The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene , 1990, Journal of bacteriology.

[90]  S. Lory,et al.  Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[91]  G. Golub Matrix computations , 1983 .

[92]  P. Nurse,et al.  Analysis of the significance of a periodic, cell size-controlled doubling in rates of macromolecular synthesis for the control of balanced exponential growth of fission yeast cells. , 1979, Journal of cell science.

[93]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[94]  G. L. Kenyon,et al.  Simple alkanethiol groups for temporary blocking of sulfhydryl groups of enzymes. , 1975, Biochemistry.

[95]  King Eo,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954 .

[96]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.