Functional Asplund's metrics for pattern matching robust to variable lighting conditions

In this paper, we propose a complete framework to process images captured under uncontrolled lighting and especially under low lighting. By taking advantage of the Logarithmic Image Processing (LIP) context, we study two novel functional metrics: i) the LIP-multiplicative Asplund metric which is robust to object absorption variations and ii) the LIP-additive Asplund metric which is robust to variations of source intensity or camera exposure-time. We introduce robust to noise versions of these metrics. We demonstrate that the maps of their corresponding distances between an image and a reference template are linked to Mathematical Morphology. This facilitates their implementation. We assess them in various situations with different lightings and movement. Results show that those maps of distances are robust to lighting variations. Importantly, they are efficient to detect patterns in low-contrast images with a template acquired under a different lighting.

[1]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[2]  B. V. K. Vijaya Kumar,et al.  Illumination Normalization Using Logarithm Transforms for Face Authentication , 2003, AVBPA.

[3]  Xiaojun Qi,et al.  Face recognition under varying illuminations using logarithmic fractal dimension-based complete eight local directional patterns , 2016, Neurocomputing.

[4]  Edward R. Dougherty Application of the Hausdorff metric in gray-scale mathematical morphology via truncated umbrae , 1991, J. Vis. Commun. Image Represent..

[5]  Michel Jourlin,et al.  Asplünd's metric defined in the Logarithmic Image Processing (LIP) framework: A new way to perform double-sided image probing for non-linear grayscale pattern matching , 2014, Pattern Recognit..

[6]  Guillaume Noyel,et al.  Logarithmic Mathematical Morphology: A New Framework Adaptive to Illumination Changes , 2018, CIARP.

[7]  David A. Shamma,et al.  YFCC100M , 2015, Commun. ACM.

[8]  Stefano Messelodi,et al.  A Kalman Filter Based Background Updating Algorithm Robust to Sharp Illumination Changes , 2005, ICIAP.

[9]  John D. Austin,et al.  Adaptive histogram equalization and its variations , 1987 .

[10]  Meng Joo Er,et al.  Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Dao-Qing Dai,et al.  Multilayer Surface Albedo for Face Recognition With Reference Images in Bad Lighting Conditions , 2014, IEEE Transactions on Image Processing.

[12]  Guillaume Noyel,et al.  Spatio-Colour Asplünd's Metric and Logarithmic Image Processing for Colour Images (LIPC) , 2016, CIARP.

[13]  Guy Courbebaisse,et al.  Chapter Two – Logarithmic Wavelets , 2014 .

[14]  Guillaume Noyel,et al.  A Link Between the Multiplicative and Additive Functional Asplund's Metrics , 2019, ISMM.

[15]  Hugues Talbot,et al.  Mathematical Morphology: from theory to applications , 2013 .

[16]  J. Michel,et al.  Logarithmic image processing: additive contrast, multiplicative contrast, and associated metrics , 2001 .

[17]  Pamela C. Cosman,et al.  Underwater Image Restoration Based on Image Blurriness and Light Absorption , 2017, IEEE Transactions on Image Processing.

[18]  G.L. Foresti,et al.  Active video-based surveillance system: the low-level image and video processing techniques needed for implementation , 2005, IEEE Signal Processing Magazine.

[19]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[20]  Laurence Meylan,et al.  High dynamic range image rendering with a retinex-based adaptive filter , 2006, IEEE Transactions on Image Processing.

[21]  G.J.F. Banon,et al.  Morphological approach for template matching , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[22]  Yan Zhang,et al.  On the Euclidean distance of images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Guillaume Noyel,et al.  Double-Sided Probing by Map of Asplund's Distances Using Logarithmic Image Processing in the Framework of Mathematical Morphology , 2017, ISMM.

[24]  Kin-Man Lam,et al.  Face recognition under varying illumination based on a 2D face shape model , 2005, Pattern Recognit..

[25]  Guang Deng,et al.  A Generalized Unsharp Masking Algorithm , 2011, IEEE Transactions on Image Processing.

[26]  Jean-Charles Pinoli,et al.  Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model , 1995, Signal Process..

[27]  Cécile Barat,et al.  Virtual double-sided image probing: A unifying framework for non-linear grayscale pattern matching , 2010, Pattern Recognit..

[28]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[29]  Guillaume Noyel,et al.  Superimposition of eye fundus images for longitudinal analysis from large public health databases , 2016, ArXiv.

[30]  Dan Schonfeld,et al.  Theoretical Foundations of Spatially-Variant Mathematical Morphology Part II: Gray-Level Images , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Guillaume Noyel,et al.  Asplünd's metric defined in the logarithmic image processing (LIP) framework for colour and multivariate images , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[32]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Wen Gao,et al.  Illumination normalization for robust face recognition against varying lighting conditions , 2003, 2003 IEEE International SOI Conference. Proceedings (Cat. No.03CH37443).

[34]  Cécile Barat,et al.  Pattern matching using morphological probing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[35]  E. Asplund Comparison Between Plane Symmetric Convex Bodies and Parallelograms. , 1960 .

[36]  B. Grünbaum Measures of symmetry for convex sets , 1963 .

[37]  Emanuele Trucco,et al.  General Purpose Matching of Grey Level Arbitrary Images , 2001, IWVF.

[38]  Martin Lauer,et al.  3D Traffic Scene Understanding From Movable Platforms , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Ronald W. Schafer,et al.  Template matching based on a grayscale hit-or-miss transform , 1996, IEEE Trans. Image Process..

[40]  Junior Barrera,et al.  Decomposition of mappings between complete lattices by mathematical morphology, Part I. General lattices , 1993, Signal Process..

[41]  Michel Jourlin,et al.  LIP operators: Simulating exposure variations to perform algorithms independent of lighting conditions , 2014, 2014 International Conference on Multimedia Computing and Systems (ICMCS).

[42]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[43]  H. Heijmans Morphological image operators , 1994 .

[44]  Jing Li,et al.  An adaptive image Euclidean distance , 2009, Pattern Recognit..

[45]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[46]  Federico Tombari,et al.  Traffic sign detection via interest region extraction , 2015, Pattern Recognit..

[47]  Laurent Navarro,et al.  The symmetric logarithmic image processing model , 2013, Digit. Signal Process..

[48]  Jos B. T. M. Roerdink,et al.  Group-Invariant Colour Morphology Based on Frames , 2014, IEEE Transactions on Image Processing.

[49]  Maryellen L. Giger,et al.  Evaluating the EM algorithm for image processing using a human visual fidelity criterion , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[50]  Guillaume Noyel,et al.  A simple expression for the map of Asplund's distances with the multiplicative Logarithmic Image Processing (LIP) law , 2017, ArXiv.

[51]  Michel Jourlin,et al.  How simulating exposure time variations in the LIP Model. Application: moving objects acquisition , 2015 .

[52]  Luigi Cinque,et al.  2-D Object Recognition By Multiscale Tree Matching , 1998, Pattern Recognit..

[53]  M. Sharif,et al.  Robust Face Recognition Technique under Varying Illumination , 2015 .

[54]  Codruta O. Ancuti,et al.  Color Balance and Fusion for Underwater Image Enhancement , 2018, IEEE Transactions on Image Processing.

[55]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[56]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[57]  M. Jourlin,et al.  Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images , 2001 .

[58]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[59]  D. Jeulin,et al.  Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies , 2014, Image Analysis & Stereology.

[60]  C. Wojek,et al.  D Traffic Scene Understanding from Movable Platforms , 2013 .

[61]  Nicolas Hautière,et al.  Real-time disparity contrast combination for onboard estimation of the visibility distance , 2006, IEEE Transactions on Intelligent Transportation Systems.

[62]  Jean-Charles Pinoli,et al.  A model for logarithmic image processing , 1988 .