On bifurcation of limit cycles from centers

For a one parameter family of plane vector fields X (·,≥) depending analytically on a small real parameter ≥, we determine the number and position of the local families of limit cycles which emerge from the periodic trajectories surrounding a center. Aside from the intrinsic interest in the example we choose, it serves to illustrate some techniques which are developed for treating similar bifurcation problems when the first order methods are inconclusive. Actually, we are able to treat the bifurcations of all orders.

[1]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[2]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[3]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[4]  Carmen Chicone,et al.  Bifurcation of Limit Cycles from Quadratic Isochrones , 1991 .

[5]  G. S. Petrov Elliptic integrals and their nonoscillation , 1986 .

[6]  R. Roussarie,et al.  A note on finite cyclicity property and Hilbert's 16th. Problem , 1988 .

[7]  William F. Langford,et al.  Degenerate Hopf bifurcation formulas and Hilbert's 16th problem , 1989 .

[8]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[9]  On the number of critical points of the period , 1986 .

[10]  N. N. Bautin,et al.  On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type , 1954 .

[11]  N. G. Lloyd,et al.  New Directions in Dynamical Systems: Limit Cycles of Polynomial Systems – Some Recent Developments , 1988 .

[12]  Willie L. Roberts,et al.  On systems of ordinary differential equations , 1961 .

[13]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[14]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[15]  Noel G. Lloyd,et al.  On the Paper of Jin and Wang Concerning the conditions for a Centre in certain Cubic Systems , 1990 .

[16]  F. Göbber,et al.  Ljapunov approach to multiple Hopf bifurcation , 1979 .

[17]  S. Bochner,et al.  Several complex variables , 1949 .

[18]  Jan A. Sanders,et al.  A codimension two bifurcation with a third order Picard-Fuchs equation , 1985 .

[19]  Ng Lloyd,et al.  Conditions for a centre and the bifurcation of limit cycles in a class of cubic systems , 1990 .

[20]  J. Walker,et al.  Book Reviews : THEORY OF BIFURCATIONS OF DYNAMIC SYSTEMS ON A PLANE A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier J. Wiley & Sons, New York , New York (1973) , 1976 .

[21]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[22]  Konstantin Sergeevich Sibirsky Introduction to the Algebraic Theory of Invariants of Differential Equations , 1989 .

[23]  Solomon Lefschetz,et al.  Differential Equations: Geometric Theory , 1958 .