Glycerol-assisted co-electrolysis in solid oxide electrolyzer cell (SOEC) for green syngas production: A 2D modelling study

[1]  Minfang Han,et al.  Modelling of an integrated protonic ceramic electrolyzer cell (PCEC) for methanol synthesis , 2023, Journal of Power Sources.

[2]  Qijiao He,et al.  Effect of Interconnector Rib on Optimization of SOFC Structural Parameters , 2022, Journal of the Electrochemical Society.

[3]  M. Ni,et al.  Modelling of solid oxide fuel cells with internal glycerol steam reforming , 2022, International Journal of Hydrogen Energy.

[4]  Peter Lund,et al.  Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells. , 2022, ACS applied materials & interfaces.

[5]  N. Shikazono,et al.  Correlation between microstructures and macroscopic properties of nickel/yttria-stabilized zirconia (Ni-YSZ) anodes: Meso-scale modeling and deep learning with convolutional neural networks , 2021, Energy and AI.

[6]  H. Tüysüz,et al.  Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction , 2021, Angewandte Chemie.

[7]  B. Mathiesen,et al.  Recent advances in solid oxide cell technology for electrolysis , 2020, Science.

[8]  Jianxin Zhu,et al.  Enhanced oxygen reduction kinetics by a porous heterostructured cathode for intermediate temperature solid oxide fuel cells , 2020 .

[9]  R. G. Santos,et al.  Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review , 2020 .

[10]  D. Vo,et al.  A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions , 2020 .

[11]  M. Akbari,et al.  Potential of solar energy in developing countries for reducing energy-related emissions , 2018, Renewable and Sustainable Energy Reviews.

[12]  Hartmut Spliethoff,et al.  Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review , 2018 .

[13]  A. Olabi,et al.  Renewable Energy and Energy Storage Systems , 2017, IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society.

[14]  Tong Liu,et al.  Methane assisted solid oxide co-electrolysis process for syngas production , 2017 .

[15]  Bin Chen,et al.  Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis , 2016 .

[16]  X. Yang,et al.  China's renewable energy goals by 2050 , 2016 .

[17]  Shumin Fang,et al.  Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis , 2016 .

[18]  C. A. Schwengber,et al.  Overview of glycerol reforming for hydrogen production , 2016 .

[19]  M. Götz,et al.  Review on methanation – From fundamentals to current projects , 2016 .

[20]  S. Amrouche,et al.  Overview of energy storage in renewable energy systems , 2015, 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC).

[21]  Chenghao Yang,et al.  Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell with hierarchically structured porous electrodes , 2015 .

[22]  Jan Pawel Stempien,et al.  Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a Solid Oxide Electrolyzer Cell (SOEC) , 2014 .

[23]  M. Aroua,et al.  Glycerol production and its applications as a raw material: A review , 2013 .

[24]  Yixiang Shi,et al.  Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells , 2013 .

[25]  Meng Ni,et al.  An electrochemical model for syngas production by co-electrolysis of H2O and CO2 , 2012 .

[26]  G. Cerrato,et al.  Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts , 2012 .

[27]  Qingxi Fu,et al.  Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment , 2010 .

[28]  A. Adesina,et al.  Glycerol Steam Reforming over Bimetallic Co−Ni/Al2O3 , 2010 .

[29]  Hao Wang,et al.  Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production , 2009 .

[30]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[31]  J. Vohs,et al.  Analysis of the performance of the electrodes in a natural gas assisted steam electrolysis cell , 2008 .

[32]  J. Vohs,et al.  Hydrogen Production Via CH4 and CO Assisted Steam Electrolysis , 2007 .

[33]  M. Pagliaro,et al.  From glycerol to value-added products. , 2007, Angewandte Chemie.

[34]  D. Leung,et al.  Parametric study of solid oxide fuel cell performance , 2007 .

[35]  Lieh-Kwang Chiang,et al.  Thermal stress analysis of a planar SOFC stack , 2007 .

[36]  J.P. Barton,et al.  Energy storage and its use with intermittent renewable energy , 2004, IEEE Transactions on Energy Conversion.

[37]  M. Fowler,et al.  Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode , 2003 .

[38]  Joel Martinez-Frias,et al.  A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen , 2003 .

[39]  Matthew Leach,et al.  Progress in renewable energy. , 2003, Environment international.

[40]  J. Young,et al.  Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling , 2002 .

[41]  D. J. Wilhelm,et al.  Syngas production for gas-to-liquids applications: technologies, issues and outlook , 2001 .

[42]  Geert Versteeg,et al.  The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media , 1995 .

[43]  J. Giddings,et al.  Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections , 1969 .

[44]  Yongming Luo,et al.  Boosting hydrogen production from steam reforming of glycerol via constructing moderate metal-support interaction in Ni@Al2O3 catalyst , 2022, Fuel.

[45]  Bin Chen,et al.  Modeling of Direct Carbon-Assisted Solid Oxide Electrolysis Cell (SOEC) for Syngas Production at Two Different Electrodes , 2016 .

[46]  Zhancheng Guo,et al.  The intensification technologies to water electrolysis for hydrogen production - A review , 2014 .

[47]  S. Singhal Solid Oxide Fuel Cells , 2003 .