Nanoarchitectonics and Electrochemical Behavior of Cu Doped h-MoO3 as an Electrode Material for Energy Storage Applications

[1]  M. Raja,et al.  Fabrication and characterization of novel Ga-doped WO3 films and n-Ga@WO3/p-Si junction diode for optoelectronic device applications , 2022, Inorganic Chemistry Communications.

[2]  M. Iqbal,et al.  Supercapattery: Merging of battery-supercapacitor electrodes for hybrid energy storage devices , 2022, Journal of Energy Storage.

[3]  Rajesh Kumar,et al.  Efficient adsorption of methylene blue on hybrid structural phase of MoO3 nanostructures , 2022, Materials Chemistry and Physics.

[4]  H. Murthy,et al.  Facile green synthesis of Molybdenum oxide nanoparticles using Centella Asiatica plant: Its photocatalytic and electrochemical lead sensor applications , 2021, Sensors International.

[5]  C. Joel,et al.  Systematic analysis and the effect of Mn doping on structural, optical and magnetic properties of MoO3 nanoparticles , 2021, Solid State Communications.

[6]  A. Moholkar,et al.  Clinker-like V2O5 nanostructures anchored on 3D Ni-foam for supercapacitor application , 2021 .

[7]  C. Joel,et al.  Influence of Ag Doped MoO3 Nanoparticles in the Seedling Growth and Inhibitory Action Against Microbial Organisms , 2021, Journal of Cluster Science.

[8]  Ru Yang,et al.  Rich bulk oxygen Vacancies-Engineered MnO2 with enhanced charge transfer kinetics for supercapacitor , 2021 .

[9]  M. Irfan,et al.  Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications , 2021 .

[10]  A. Balouch,et al.  A Practical Non-Enzymatic, Ultra-Sensitive Molybdenum Oxide (MoO3) Electrochemical Nanosensor for Hydroquinone , 2021 .

[11]  Sang A Han,et al.  Macaroni Fullerene Crystals-Derived Mesoporous Carbon Tubes as the High Rate Performance Supercapacitor Electrode Material , 2021 .

[12]  I. Massoudi,et al.  Synthesis and Characterization of MoO3 for Photocatalytic Applications , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[13]  M. Sajjad Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications , 2021, Journal of Inorganic and Organometallic Polymers and Materials.

[14]  M. Orlandi,et al.  Ultrafast Growth of h-MoO3 Microrods and Its Acetone Sensing Performance , 2020, Surfaces.

[15]  Nasrin Siraj Lopa,et al.  Synthesis of Cu-Doped Mn3O4@Mn-Doped CuO Nanostructured Electrode Materials by a Solution Process for High-Performance Electrochemical Pseudocapacitors , 2020, ACS omega.

[16]  H. Fan,et al.  Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors , 2020 .

[17]  S. Muthukumaran,et al.  Tuning of energy gap, structural, FTIR and photoluminescence examination of Ni, Sn dual doped ZnO nanoparticles , 2019, Materials Research Express.

[18]  Danqing Li,et al.  The effect of metal ions doping on the electrochemical performance of molybdenum trioxide , 2018, Electrochimica Acta.

[19]  H. Nagabhushana,et al.  MoO3 nanostructures from EGCG assisted sonochemical route: Evaluation of its application towards forensic and photocatalysis , 2017 .

[20]  M. Maaza,et al.  Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application. , 2017, Journal of colloid and interface science.

[21]  A. S. Patil,et al.  Supercapacitive properties of CuO thin films using modified SILAR method , 2017, Ionics.

[22]  Chenguo Hu,et al.  CuO Nanoflowers growing on Carbon Fiber Fabric for Flexible High-Performance Supercapacitors , 2016 .

[23]  Peng Zhang,et al.  Self-Assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. , 2014, Small.

[24]  Pooi See Lee,et al.  Synthesis of pyramidal and prismatic hexagonal MoO3 nanorods using thiourea , 2013 .

[25]  G. Muralidharan,et al.  Microwave assisted synthesis of Co3O4 nanoparticles for high-performance supercapacitors , 2013 .

[26]  Rujia Zou,et al.  Self-assembling hybrid NiO/Co3O4 ultrathin and mesoporous nanosheets into flower-like architectures for pseudocapacitance , 2013 .

[27]  A. C. Bose,et al.  Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation , 2013 .

[28]  You-nian Liu,et al.  Facile synthesis of α-MoO3 nanobelts and their pseudocapacitive behavior in an aqueous Li2SO4 solution , 2013 .

[29]  Pooi See Lee,et al.  Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device , 2012 .

[30]  G. Muralidharan,et al.  Interconnected V2O5 nanoporous network for high-performance supercapacitors. , 2012, ACS applied materials & interfaces.

[31]  A. C. Bose,et al.  Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles , 2011 .

[32]  D. Kang,et al.  Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices , 2010 .

[33]  L. Daemen,et al.  "Hexagonal molybdenum trioxide"--known for 100 years and still a fount of new discoveries. , 2010, Inorganic chemistry.

[34]  Wei Xing,et al.  Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation , 2009 .

[35]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[36]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[37]  W. Sugimoto,et al.  Molybdenum Oxide/Carbon Composite Electrodes as Electrochemical Supercapacitors , 2001 .

[38]  P. Almodóvar,et al.  Synthesis, characterization and electrochemical assessment of hexagonal molybdenum trioxide (h-MoO3) micro-composites with graphite, graphene and graphene oxide for lithium ion batteries , 2021 .

[39]  Hyung‐Ho Park,et al.  Hydrothermally synthesized urchinlike NiO nanostructures for supercapacitor and nonenzymatic glucose biosensing application , 2021 .