Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins

[1]  A. Westphal,et al.  Flavin dependent monooxygenases. , 2014, Archives of biochemistry and biophysics.

[2]  W. V. van Berkel,et al.  FAD C(4a)‐hydroxide stabilized in a naturally fused styrene monooxygenase , 2013, FEBS letters.

[3]  E. Morrison,et al.  Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction. , 2013, Biochemistry.

[4]  K. O’Connor,et al.  The oxidation of alkylaryl sulfides and benzo[b]thiophenes by Escherichia coli cells expressing wild-type and engineered styrene monooxygenase from Pseudomonas putida CA-3 , 2013, Applied Microbiology and Biotechnology.

[5]  Zhong-Liu Wu,et al.  Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity. , 2012, Journal of biotechnology.

[6]  R. Harrer Indigo auf Speicherchips , 2012 .

[7]  M. Schlömann,et al.  Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme , 2012, Applied and Environmental Microbiology.

[8]  M. Schlömann,et al.  One-Component Styrene Monooxygenases: An Evolutionary View on a Rare Class of Flavoproteins , 2012, Applied Biochemistry and Biotechnology.

[9]  C. Thibodeaux,et al.  Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. , 2012, Chemical reviews.

[10]  Zhong-Liu Wu,et al.  Biocatalysis as an alternative for the production of chiral epoxides: A comparative review , 2011 .

[11]  W. V. van Berkel,et al.  Catalytic and Structural Features of Flavoprotein Hydroxylases and Epoxidases , 2011 .

[12]  Zhong-Liu Wu,et al.  Rational design of styrene monooxygenase mutants with altered substrate preference , 2011, Biotechnology Letters.

[13]  Zhong-Liu Wu,et al.  Highly diastereo- and enantio-selective epoxidation of secondary allylic alcohols catalyzed by styrene monooxygenase. , 2011, Chemical communications.

[14]  G. Gassner,et al.  Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase. , 2011, Biochemistry.

[15]  Zhong-Liu Wu,et al.  Styrene monooxygenase from Pseudomonas sp. LQ26 catalyzes the asymmetric epoxidation of both conjugated and unconjugated alkenes , 2010 .

[16]  W. V. van Berkel,et al.  StyA1 and StyA2B from Rhodococcus opacus 1CP: a Multifunctional Styrene Monooxygenase System , 2010, Journal of bacteriology.

[17]  W. Eisenreich,et al.  Bacterial phenylalanine and phenylacetate catabolic pathway revealed , 2010, Proceedings of the National Academy of Sciences.

[18]  A. Rosenzweig,et al.  Structure and ligand binding properties of the epoxidase component of styrene monooxygenase . , 2010, Biochemistry.

[19]  Sun-Gu Lee,et al.  Development of a recombinant Escherichia coli-based biocatalyst to enable high styrene epoxidation activity with high product yield on energy source , 2010 .

[20]  W. Choi Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution , 2009, Applied Microbiology and Biotechnology.

[21]  W. V. van Berkel,et al.  Identification of a Novel Self-Sufficient Styrene Monooxygenase from Rhodococcus opacus 1CP , 2009, Journal of bacteriology.

[22]  Hiroshi Yamazaki,et al.  Human cytochrome P450 2A13 efficiently metabolizes chemicals in air pollutants: naphthalene, styrene, and toluene. , 2008, Chemical research in toxicology.

[23]  S. Tu,et al.  Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase. , 2008, Biochemistry.

[24]  M. Fraaije,et al.  Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. , 2006, Journal of biotechnology.

[25]  G. Gassner,et al.  Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase. , 2005, Archives of biochemistry and biophysics.

[26]  L. J. Higgins,et al.  Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme , 2005, Nature.

[27]  L. Meijer,et al.  Biosynthesis of New Indigoid Inhibitors of Protein Kinases Using Recombinant Cytochrome P450 2A6 , 2005, Chemistry & biodiversity.

[28]  A. Schmid,et al.  Biochemical Characterization of StyAB from Pseudomonas sp. Strain VLB120 as a Two-Component Flavin-Diffusible Monooxygenase , 2004, Journal of bacteriology.

[29]  A. Christopoulos,et al.  Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting , 2004 .

[30]  L. Meijer,et al.  Generation of new protein kinase inhibitors utilizing cytochrome p450 mutant enzymes for indigoid synthesis. , 2004, Journal of medicinal chemistry.

[31]  F. Guengerich,et al.  Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. , 2004, Archives of biochemistry and biophysics.

[32]  Si-Wouk Kim,et al.  A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli. , 2003, Biochemical and biophysical research communications.

[33]  A. Parret,et al.  A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. , 2002, Trends in microbiology.

[34]  K. R. Marshall,et al.  P450 BM3: the very model of a modern flavocytochrome. , 2002, Trends in biochemical sciences.

[35]  H. Yamamoto,et al.  Plant lipocalins: violaxanthin de-epoxidase and zeaxanthin epoxidase. , 2000, Biochimica et biophysica acta.

[36]  T. Porter,et al.  Cloning, heterologous expression, and enzymological characterization of human squalene monooxygenase. , 2000, Archives of biochemistry and biophysics.

[37]  H. Nishino,et al.  Cancer chemopreventive activity of synthetic colorants used in foods, pharmaceuticals and cosmetic preparations. , 1998, Cancer letters.

[38]  M. Wubbolts,et al.  Towards a Biocatalyst for (S)-Styrene Oxide Production: Characterization of the Styrene Degradation Pathway of Pseudomonas sp. Strain VLB120 , 1998, Applied and Environmental Microbiology.

[39]  K. O’Connor,et al.  Indigo formation by aromatic hydrocarbon-degrading bacteria , 1998, Biotechnology Letters.

[40]  M. J. van der Werf,et al.  Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase , 1990, Applied and environmental microbiology.

[41]  H. Dalton,et al.  A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). , 1989, The Biochemical journal.

[42]  Makoto Tanaka,et al.  The Al/Indigo/Au photovoltaic cell , 1987 .

[43]  R. F. Chen,et al.  Removal of fatty acids from serum albumin by charcoal treatment. , 1967, The Journal of biological chemistry.

[44]  W. Lüttke,et al.  Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, IV. Substituenteneffekt am Indigo: Die Darstellung des 5.5′‐ und 6.6′‐Diaza‐indigos , 1966 .

[45]  K. O’Connor,et al.  In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis , 2009, Applied Microbiology and Biotechnology.

[46]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[47]  R. Hoessel Synthese von Derivaten des Indirubins und Untersuchungen zur Mechanismusaufklärung ihrer antineoplastischen Wirkung , 1999 .

[48]  R. Furstoss,et al.  Synthesis of enantiopure epoxides through biocatalytic approaches. , 1997, Annual review of microbiology.

[49]  E. Galli,et al.  Styrene Catabolism by a Strain of Pseudomonas fluorescens. , 1983, Systematic and applied microbiology.