3D hierarchical CoFe2O4/CoOOH nanowire arrays on Ni-Sponge for high-performance flexible supercapacitors

[1]  Yawei Yu,et al.  Blanket-like Co(OH)2/CoOOH/Co3O4/Cu(OH)2 composites on Cu foam for hybrid supercapacitor , 2020 .

[2]  Xueping Gao,et al.  Conductive CoOOH as Carbon‐Free Sulfur Immobilizer to Fabricate Sulfur‐Based Composite for Lithium–Sulfur Battery , 2019, Advanced Functional Materials.

[3]  L. Mai,et al.  Hierarchical MnCo2O4@NiMoO4 as free-standing core–shell nanowire arrays with synergistic effect for enhanced supercapacitor performance , 2019, Inorganic Chemistry Frontiers.

[4]  Xin Wang,et al.  Bifunctional Conducting Polymer Coated CoFe 2 O 4 Core‐Shell Nanolayer on Carbon Fiber Cloth for 2.0 V Wearable Aqueous Supercapacitors , 2019, ChemistrySelect.

[5]  X. Gong,et al.  All‐Solid‐State Flexible Asymmetric Supercapacitors Fabricated by the Binder‐Free Hydrophilic Carbon Cloth@MnO2 and Hydrophilic Carbon Cloth@Polypyrrole Electrodes , 2019, Advanced Electronic Materials.

[6]  A. V. Ivanishchev,et al.  Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials , 2018, Monatshefte für Chemie - Chemical Monthly.

[7]  W. Fei,et al.  Core-branched CoSe2/Ni0.85Se nanotube arrays on Ni foam with remarkable electrochemical performance for hybrid supercapacitors , 2018 .

[8]  P. Ajayan,et al.  Mesostructured CuCo2S4/CuCo2O4 nanoflowers as advanced electrodes for asymmetric supercapacitors , 2018, Journal of Power Sources.

[9]  Xinhua Li,et al.  An extra-long-life supercapacitor based on Co3O4/NiCo2O4/NiO/C&S composite by decomposition of Co/Ni-based coordination complex , 2018, Journal of Alloys and Compounds.

[10]  Biny R. Wiston,et al.  Synthesis and enhanced electrochemical performance of PANI/Fe3O4 nanocomposite as supercapacitor electrode , 2018, Journal of Alloys and Compounds.

[11]  S. Karmakar,et al.  Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials , 2018, Journal of Alloys and Compounds.

[12]  Kuili Liu,et al.  Hierarchical CuCo2O4 nanourchin supported by Ni foam with superior electrochemical performance , 2018, Journal of Alloys and Compounds.

[13]  Youliang Wang,et al.  Carbon@SnS2 core-shell microspheres for lithium-ion battery anode materials , 2018, Ionics.

[14]  Dongxuan Guo,et al.  Oriented synthesis of Co3O4 core-shell microspheres for high-performance asymmetric supercapacitor , 2018, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[15]  Wei Li,et al.  Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor , 2018, Journal of Alloys and Compounds.

[16]  Xin Wang,et al.  Bioinspired Reduced Graphene Oxide/Polyacrylonitrile‐Based Carbon Fibers/CoFe2O4 Nanocomposite for Flexible Supercapacitors with High Strength and Capacitance , 2018 .

[17]  Yunpeng Huang,et al.  Rational construction of a 3D hierarchical NiCo2O4/PANI/MF composite foam as a high-performance electrode for asymmetric supercapacitors. , 2018, Chemical communications.

[18]  R. Sun,et al.  Flexible β-Ni(OH) 2 /graphene electrode with high areal capacitance enhanced by conductive interconnection , 2018 .

[19]  Tianhao Xu,et al.  Ni-Co-S/Co(OH)2 nanocomposite for high energy density all-solid-state asymmetric supercapacitors , 2018 .

[20]  W. Fei,et al.  Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors , 2018 .

[21]  E. Liu,et al.  Hierarchical porous Co(OH)F/Ni(OH)2: A new hybrid for supercapacitors , 2018 .

[22]  Xiaoyang Liu,et al.  Hierarchical 3D NiFe2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance asymmetric supercapacitors. , 2018, Dalton transactions.

[23]  Maoxiang Wu,et al.  Oriented Growth of ZIF‐67 to Derive 2D Porous CoPO Nanosheets for Electrochemical‐/Photovoltage‐Driven Overall Water Splitting , 2018 .

[24]  Wei Xu,et al.  Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors , 2018 .

[25]  Jingxia Qiu,et al.  Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors , 2017 .

[26]  L. Gan,et al.  Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. , 2017, ACS nano.

[27]  K. Wijayantha,et al.  The Pseudocapacitive Nature of CoFe2O4 Thin Films , 2017 .

[28]  Meilin Liu,et al.  A Low‐Cost, Self‐Standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid‐State Supercapacitors , 2017 .

[29]  H. Che,et al.  Facile synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors , 2017 .

[30]  Sheng Han,et al.  Novel method of preparing CoFe2O4/graphene by using steel rolling sludge for supercapacitor , 2017 .

[31]  Jungwoo Oh,et al.  Three-Dimensional Hierarchically Mesoporous ZnCo2 O4 Nanowires Grown on Graphene/Sponge Foam for High-Performance, Flexible, All-Solid-State Supercapacitors. , 2017, Chemistry.

[32]  Xiaodong Lei,et al.  CoOOH ultrathin nanoflake arrays aligned on nickel foam: fabrication and use in high-performance supercapacitor devices , 2016 .

[33]  I. A. Ivanishcheva,et al.  Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data , 2016, Ionics.

[34]  R. Selvan,et al.  Electrochemical performances of CoFe2O4 nanoparticles and a rGO based asymmetric supercapacitor , 2015 .

[35]  R. Selvan,et al.  Electrochemical properties of CoFe2O4 nanoparticles as negative and Co(OH)2 and Co2Fe(CN)6 as positive electrodes for supercapacitors , 2015 .

[36]  Z. Huang,et al.  Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. , 2015, ACS applied materials & interfaces.

[37]  Jun Wang,et al.  Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. , 2015, Nanoscale.

[38]  Q. Fu,et al.  Facile Synthesis of Carbon Nanosphere/NiCo2O4 Core-shell Sub-microspheres for High Performance Supercapacitor , 2015, Scientific Reports.

[39]  Gui Zhang,et al.  CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances , 2015 .

[40]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[41]  Yuxin Zhang,et al.  One-pot controllable synthesis of flower-like CoFe2O4/FeOOH nanocomposites for high-performance supercapacitors , 2014 .

[42]  A. V. Ivanishchev,et al.  Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry , 2014 .

[43]  Zhaorong Chang,et al.  Effects of γ-CoOOH coating on the high-temperature and high-rate performances of spherical nickel hydroxide electrodes , 2014 .

[44]  A. V. Ivanishchev,et al.  Diffusion aspects of lithium intercalation as applied to the development of electrode materials for lithium-ion batteries , 2014, Journal of Solid State Electrochemistry.

[45]  Chandrakant D. Lokhande,et al.  Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application , 2012 .

[46]  Zhen Zhou,et al.  Preparation and electrochemical performances of doughnut-like Ni(OH)₂-Co(OH)₂ composites as pseudocapacitor materials. , 2012, Nanoscale.

[47]  Hongwei Tang,et al.  Synthesis of γ-CoOOH and its effects on the positive electrodes of nickel batteries , 2009 .

[48]  K. V. Zapsis,et al.  Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers , 2008 .

[49]  Xueping Gao,et al.  Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles , 2007 .

[50]  Haoshen Zhou,et al.  Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property , 2006 .