暂无分享,去创建一个
Julien Langou | Ichitaro Yamazaki | Erik G. Boman | Kasia Swirydowicz | Stephen Thomas | Daniel Bielich
[1] Luke N. Olson,et al. Node-Aware Improvements to Allreduce , 2019, 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI).
[2] Christopher C. Paige,et al. The Effects of Loss of Orthogonality on Large Scale Numerical Computations , 2018, ICCSA.
[3] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[4] R. Kahn. The Effects of a Loss , 1989 .
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] T. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration , 1978 .
[7] Sivasankaran Rajamanickam,et al. Amesos2 and Belos: Direct and iterative solvers for large sparse linear systems , 2012, Sci. Program..
[8] Luc Giraud,et al. On the Influence of the Orthogonalization Scheme on the Parallel Performance of GMRES , 1998, Euro-Par.
[9] Shreyas Ananthan,et al. Low synchronization Gram–Schmidt and generalized minimal residual algorithms , 2020, Numer. Linear Algebra Appl..
[10] Ichitaro Yamazaki,et al. Low-synchronization orthogonalization schemes for s-step and pipelined Krylov solvers in Trilinos , 2020, PPSC.
[11] Andrés Tomás,et al. Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement , 2007, Parallel Comput..
[12] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[13] S. K. Kim,et al. An Efficient Parallel Algorithm for Extreme Eigenvalues of Sparse Nonsymmetric Matrices , 1992 .
[14] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[15] Julien Langou,et al. A note on the error analysis of classical Gram–Schmidt , 2006, Numerische Mathematik.
[16] J. E. Román,et al. Krylov-Schur Methods in SLEPc , 2015 .
[17] Miroslav Rozlozník,et al. An overview of block Gram-Schmidt methods and their stability properties , 2020, ArXiv.
[18] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[19] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.