Elitist nondominated sorting genetic algorithm based RF IC optimizer

An optimization tool for radio frequency integrated circuits (RFICs) based on an elitist nondominated sorting genetic algorithm is introduced. It casts RF circuit synthesis as a multi-objective optimization problem and produces multiple solutions along the Pareto optimal front. Optimization is followed by sensitivity assessment wherein Monte Carlo simulations are performed for the Pareto points with respect to process, voltage, and temperature variations. The tool is validated in the synthesis of a 5.2-GHz direct-conversion receiver front-end that includes a common-gate differential low-noise amplifier, I/Q down-conversion mixers, and a quadrature voltage-controlled oscillator in a 250-nm SiGe BiCMOS process.

[1]  G. Gielen,et al.  WATSON: a multi-objective design space exploration tool for analog and RF IC design , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[2]  P. Andreani,et al.  A low-phase-noise low-phase-error 1.8 GHz quadrature CMOS VCO , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[3]  Ken Kundert Accurate and Rapid Measurement of IP 2 and IP 3 , 2001 .

[4]  Mun-Yang Park,et al.  A new 6 GHz fully integrated low power low phase noise CMOS LC quadrature VCO , 2003, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003.

[5]  D.J. Allstot,et al.  Design considerations for CMOS low-noise amplifiers , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[6]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[7]  Guido Stehr,et al.  Performance trade-off analysis of analog circuits by normal-boundary intersection , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[8]  Georges G. E. Gielen,et al.  WATSON: design space boundary exploration and model generation for analog and RFIC design , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  Masatoshi Sakawa,et al.  Genetic Algorithms and Fuzzy Multiobjective Optimization , 2001 .

[10]  R. Gupta,et al.  Parasitic-aware design and optimization of CMOS RF integrated circuits , 1998, 1998 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Papers (Cat. No.98CH36182).

[11]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[12]  D. J. Allstot,et al.  A fully integrated 0.5-5.5 GHz CMOS distributed amplifier , 2000 .

[13]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[14]  Ali Hajimiri,et al.  Concepts and methods in optimization of integrated LC VCOs , 2001, IEEE J. Solid State Circuits.

[15]  Jim Smith,et al.  An Adaptive Poly-Parental Recombination Strategy , 1995, Evolutionary Computing, AISB Workshop.

[16]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[17]  Kiyong Choi,et al.  Parasitic-aware design and optimization of a fully integrated CMOS wideband amplifier , 2003, ASP-DAC '03.

[18]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[19]  Michiel Steyaert,et al.  CYCLONE: automated design and layout of RF LC-oscillators , 2000, Proceedings 37th Design Automation Conference.

[20]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[21]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[22]  Kiyong Choi,et al.  Parasitic-Aware Optimization of CMOS RF Circuits , 2003 .