Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes

[1]  Jihyun Hong,et al.  Organic Nanohybrids for Fast and Sustainable Energy Storage , 2014, Advanced materials.

[2]  V. Presser,et al.  Carbons and Electrolytes for Advanced Supercapacitors , 2014, Advanced materials.

[3]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[4]  Ki Tae Nam,et al.  Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. , 2013, Angewandte Chemie.

[5]  Haoshen Zhou,et al.  Towards sustainable and versatile energy storage devices: an overview of organic electrode materials , 2013 .

[6]  Yang Shao-Horn,et al.  Role of Oxygen Functional Groups in Carbon Nanotube/Graphene Freestanding Electrodes for High Performance Lithium Batteries , 2013 .

[7]  M. Sydnes,et al.  Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment , 2013 .

[8]  T. Nokami,et al.  Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. , 2012, Journal of the American Chemical Society.

[9]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[10]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[11]  Jun Chen,et al.  Organic Electrode Materials for Rechargeable Lithium Batteries , 2012 .

[12]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[13]  Michael A. Lowe,et al.  Tailored redox functionality of small organics for pseudocapacitive electrodes , 2012 .

[14]  Jun Liu,et al.  Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. , 2012, Nano letters.

[15]  G. Soloveichik,et al.  Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes , 2012 .

[16]  Kazunori Arifuku,et al.  Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. , 2011, Nature materials.

[17]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[18]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[19]  Klaus Müllen,et al.  Pyrene-based materials for organic electronics. , 2011, Chemical reviews.

[20]  Victor E. Brunini,et al.  Semi‐Solid Lithium Rechargeable Flow Battery , 2011 .

[21]  Philippe Poizot,et al.  Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices , 2011 .

[22]  D. Y. Kim,et al.  Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor , 2011 .

[23]  Shuo Chen,et al.  High-power lithium batteries from functionalized carbon-nanotube electrodes. , 2010, Nature nanotechnology.

[24]  Yunhong Zhou,et al.  Polyimides: promising energy-storage materials. , 2010, Angewandte Chemie.

[25]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[26]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[27]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[28]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[29]  M. Armand,et al.  Building better batteries , 2008, Nature.

[30]  L. Qu,et al.  Electrochemical polymerization of naphthalene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer , 2003 .

[31]  John R. Owen,et al.  Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries , 2003 .

[32]  Pietro Tundo,et al.  The chemistry of dimethyl carbonate. , 2002, Accounts of chemical research.

[33]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[34]  A. Lever,et al.  Erratum to “Tuning metalloporphyrin and metallophthalocyanine redox potentials using ligand electrochemical (EL) and Hammett (σp) parametrization” [Coord. Chem. Rev. 216–217 (2001) 45–54] , 2001 .

[35]  A. Lever,et al.  Tuning metalloporphyrin and metallophthalocyanine redox potentials using ligand electrochemical (EL) and Hammett (σp) parametrization , 2001 .

[36]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[37]  J. Tojo,et al.  Physical Properties of the Ternary Mixture Dimethyl Carbonate + Methanol + Benzene and Its Corresponding Binaries at 298.15 K , 1999 .

[38]  John R. Owen,et al.  Rechargeable lithium batteries , 1997 .

[39]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[40]  N. Oyama,et al.  Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density , 1995, Nature.

[41]  Acknowledgements , 1992, Experimental Gerontology.

[42]  Meilin Liu,et al.  Novel Solid Redox Polymerization Electrodes Electrochemical Properties , 1991 .

[43]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[44]  T. Nagatomo,et al.  All‐Plastic Batteries with Polyacetylene Electrodes , 1987 .

[45]  Alan G. MacDiarmid,et al.  Polyaniline: Electrochemistry and application to rechargeable batteries , 1987 .

[46]  A. Kitani,et al.  Performance Study of Aqueous Polyaniline Batteries , 1986 .

[47]  N. Mermilliod,et al.  A Study of Chemically Synthesized Polypyrrole as Electrode Material for Battery Applications , 1986 .

[48]  R. Waltman,et al.  The electropolymerization of polycyclic hydrocarbons: substituent effects and reactivity/structure correlations , 1985 .

[49]  R. Waltman,et al.  The Electrochemical Oxidation and Polymerization of Polycyclic Hydrocarbons , 1985 .

[50]  W. Schmidt,et al.  Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons , 1974 .

[51]  L. Hammett,et al.  The Effect of Structure Upon the Reactions of Organic Compounds. Temperature and Solvent Influences , 1936 .

[52]  T. Kawai,et al.  Ab initio calculations of polycyclic aromatic hydrocarbons adsorbed on graphite edge for molecular-scale surface coatings of lithium-ion battery anodes , 2014 .

[53]  J. Rolland,et al.  Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes , 2013 .

[54]  Yuki Yamada,et al.  Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries , 2012 .

[55]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[56]  Jou-Hyeon Ahn,et al.  for Rechargeable Lithium Batteries , 2009 .

[57]  R. Waltman,et al.  Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology , 1986 .

[58]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[59]  M. E. Peover,et al.  The electro-oxidation of polycyclic aromatic hydrocarbons in acetonitrile studied by cyclic voltammetry , 1967 .

[60]  R. P. Seward,et al.  The Dielectric Constants of Ethylene Carbonate and of Solutions of Ethylene Carbonate in Water, Methanol, Benzene and Propylene Carbonate , 1958 .

[61]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .